Bayesian Physics Informed Neural Networks for Inverse problems
(BPINN-IP) and Digital Twins for industrial and biological application

@ Why: Classical regularization and simulation methods fall
short for today’s engineering workflows.

@ What: Surrogate modeling using NNs and PINNs variants.

@ Advanced technics (BPINN-IP) to push farther the
limitations and the boundary of what is possible with
PINNs based surrogate models.
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Summary of the Presentation

@ Inverse problems: Model-driven vs Data-driven

@ Surrogate modeling via Neural Networks

© Deep Neural Networks, Training, Validation, Testing

© Physics-Informed Neural Networks (PINN) for ODE/PDE

© Bayesian PINN for inverse problems (BPINN-IP)

© Challenges: Structure of NN, Combining Simulated and Experimental data
@ Digital Twins for industrial applications

© Digital Twins for biological systems
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Motivations
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Complex multi-physics systems (fluids, heat transfer, mechanics, .. .).
High-fidelity numerical solvers are accurate but expensive.
Industrial workflows require fast evaluations for design and control.

Build surrogate models that are:
e Fast: real-time or near real-time predictions.
e Physics-consistent. obey PDEs and constraints.
e Probabilistic: provide uncertainty quantification (UQ).
PINNs are a promising framework in this direction.
BPINNs extend PINNs and give the possibility of uncertainty quantification (UQ)
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Surrogate Modeling via Neural Networks

Complex forward models

@ Governing equations: ODE, PDE,
Integral equations.

@ High-dimensional state-space,
Fine discretization.

@ Expensive simulation codes (CFD, FEM, ...).

Neural-network surrogate

@ Learn a mapping
01— f~F(0),

where 0 gathers parameters / inputs and
f outputs.

@ Once trained, evaluation cost is very low.

Complex
Forward Model
(ODE/PDE)
Integral Equations

Training data

Y

Neural Network
Surrogate

Simple & fast inference
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Scientific Computing history
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PINN Success and the Rise of BPINN

Deep Ritz Method DeepXDE library
(E and Yu) (Lu etal

Fr TGNN
(Wang et al.)
PIGAN variational PINN | | [ Nonlocal 1 PINN TgCNN A-PINN PINN-FORM
(vang et al)) (Kharazmi et al) Nrang et an> (Wang et al.) (Costabal etal) (Meng et al.)
PINN Parallel-in hp-VPINN Self-adaptive PINN PI-GGN dient Separable PINN k-space PINN
(Raissietal)| | tm e PINN (Kharazmi et al.) (McClenn: y (Gao et al) | | enhanced PINN (Cho et al.) (Hedayatrasa
(Meng et al.) and Braga Nato) (Yuetal) etal)

@ More than 1000 papers on PINNs in the last few years, covering:
e Fluid dynamics, Aero dynamics, Solid mechanics, Robotics
e Seismology, Geophysics, Astronomy
e Medical and Biological modeling and imaging,
Industrial designing, testing, diagnostics and maintenance, Digital Twins.

@ A smaller but growing subset focuses on Bayesian variants:

e Uncertainty quantification in parameters and predictions,
e Robustness to noisy or scarce data,
e Quantification of modelling and measurement errors.
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Forward and Inverse problems

Brain imaging:
Forward problem: Given the known source f predict the data g

Brain activity EEG or MEG data
f — Predict Data g = Hf + €

Activity of Interest = =
S "\ e e b
V
Background ) & L
Activity

Inverse Problem: Source Imaging

Estimate f = Observed g
Inverse problem:

Given the observed data g, estimate the unknown source f.
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Model Based methods

@ Use a mathematical Forward model (Physics) relating the unknowns f to the
observable g;

@ Get the data (observables), and use Inversion methods to infer the interested
unknown quantity, a point estimate f or a probability distribution p(f|g).
Needs:

@ A Forward model, in general, Ordinary or Partial Differential Equations (ODE / PDE),
Integral Equations, Integro-Differential Equations;

@ In general, needs a discretization step to get a finite dimensional equations to
implement it: g = H(f) + €.

@ Use Regularization or Bayesian inference methods to estimate or to infer the
interested unknowns quantities

@ Needs in general a great computational ressources, in particular, if we want also
quantify uncertainties.
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Data Driven NN methods

@ Use a great amount of labeled data (Input/Output) to learn a model, and then use it.
This needs to:

@ Choose a NN structure: Number of input and output nodes, number of hidden layers,
type of activation function, ...

@ Get a great amount of labeled data for training, some more reliable for validation

@ Choose a criterion of optimality (loss function), an optimization algorithms (SG,
ADAM, ...), some hyper parameters such as learning rate,..

@ Train the model, Validate it, Test it on a set of test data, measure the performances,
and finally

@ Use it (Inference step).
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Brain imaging: Using Neural Network (NN)

@ Real forward model is too complexe to be approximated by a linear operation
@ Even if the forward model could be known, the inversion is very costly
NN

Output

@ Different Steps:
1- Choosing an appropriate structure, 2- Get a Training data set, 3- Train the model,
4- Evaluate its performances, and
5- Upload and implement it for using.
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Model Based / Data Driven

Model Based

g=Hf+e
f= argrr};n{llg — Hf >+ AllFIP}
_ p@lAHr(f)
p(flg) = — g

Data based NN

Ouput

8ri NN(w) | |
{fTZ-} = Training - W

gri = [w] = £, J(w) = || fr — fI?
gi= @ |=f
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Deep Neural Network Learning work flow:
Learning (Training) and Inference (Testing) (Testing)

INFERENCE

Agplying this capability

TRAINING
DATASET
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Inverse problems: Regularization and Bayesian inference

Inverse problems: g¢=H(f)+e
Acoustic imaging / Sound source localization
Vibration source localization using vibration sensors
Infrared and Thermal imaging using IR camera
Dynamical systems, ODE, PDE

Main methods:

Analytical inversion methods for simple geometrical shapes
Regularisation based methods: SVD, Optimization

? = argn}in{Hg — Hf|? +AR(f)}

®

Our Focus: Bayesin inference: g = Hf + €

p(glf) p(f)

r(g)
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Bayesian Inference for Inverse Problems

@ Forward model: g = H(f) +e€

@ Likelihood: Uncertainty of errors p(g|f, H)

@ Prior knowledge, Desired property of the solution: p(f)
Bayes rule:

_ P@IL,H) p(f)

gy o PGILH)p(f)

p(flg)

Use the posterior to:

o Define estimators (MAP, PM);
Compute probabilities and make decisions P(f € Q)
Generate samples (MCMC, Nested Sampling, ...)
Quatify uncertainties (variances, covariances, entropies, ...)
Model selection

®© 6 6 ¢

P(HyIg) o p(g|Hy) = [ p(glf, HOp(f)of
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Bayesian inference: Linear g = H f + e and Gaussian case

f p(flog) = N(f10,04T) o exp | =5 |I 1]
Hy

p(8lf,0c) = N(glHS, vel) < exp | =5k g — HFf ]

Bayes: p(f|g,vf,ve) = ./\/'(f|]Ac,f)
7= [H’H+/\I]*1H’g
L=v[HH+AI™", A=
° Computatlon of f Expected value = Mode : ’
f = argmax {p f|g,Uf,Ue)} = argmmf )}

J(F) = llg = HFIB+AIFIB A=-%

@ Computation of Z is much more costly: VBA, MCMC sampllrfg,

Perturbation-Optimization, Langevin sampling, ...
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IV- Physics Informed Neural Networks (PINN)

Main idea:

@ NNs are universal function approximators. Therefore a NN, provided that it is deep
enough, can approximate any function, and also the solution for the differential
equations.

@ Computing the derivatives of a NN output with respect to any of its input (and the
model parameters during backpropagation), using Automatic Differentiation (AD), is
easy and cheap. This is actually what made NNs so efficient and successful.

@ Usually NNs are trained to fit the data, but do not care from where come those data.

@ Physics Informed: Besides fitting the data, fit also the equations that govern the
system which produced those data.
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Small data Some data Big data

Data

Physics

Lots of physics Some physics No physics

@ Physics based or Physics Informed: Besides fitting the data, fit also the equations
that govern the system which produced those data.
@ In this way, the predictions will be much more precise and will generalize much better.

W= fltu), u(xt)
{x b} = > J(w) = L — @)+ Lo £t )

PDE Loss

Gradient Descent t

o Z( —@)> =0
z O O (MO B e B Ou Data Loss
t O Data Loss 2 2y
OO

T Gradient Descent

Tranditional NN Physics-informed NN
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PINN with ODE and PDE forward models

@ PINN: Concept proposed by Raissi et al., back in 2019:

Create a hybrid model where both the observational data and the known physical
knowledge (represented as differential equations) are present in model training.

Input Dynamical |:> Output
(t) System (u)

=a-u+b
& = = -
Partially known du
. ) Y . — f(t7 U) Unknown functions
differential equations dt
du

=
.
|
IS
+
| =
+
-
~
E,
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PINN for dynamical system identification

u —t u _t

aaTl = e 10UHl3 aaTl = f1 = e usu3
U 123

aaitz = U1lU3 aaitz = f2 = U1lUj3

SE = 2uup SR =aumup+b

ODE residual loss

(duy /dt — f1)?
(duz/dt — f2)*

(duz/dt — auyuz — b)*

duy  dus dugz

dt At U dt
’ ~0ou of Gradient
P 1 radien
Q= *U ::Ouz = p— Descent
: OU3 \o f2
__________ >0 ¢
~ RN v
N N
uU— net f— net
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PINN with ODE and PDE: Multi-output model

PDE: Loss function
Lu()=f(),  xeq,

Boundary conditions:

u(x) = h(x), x € oY,

o g, xeon, w
Observed data points: @‘
u(x) = wm(xf), i Ummmwr

Fl) = fulx), 1—1, ..

Input layer
Hldden Iayer

Neural networks
unn(x; w,b) = Tmonnflo - 0T?0T" (x),
Ti()=c(wl x-+b), j=12,...,n
£ | = f(x), x € [-0.7,0.7]
xamples:
P /\(ax2+ >+u(u2_1) :f(X), X,y € [_1/1]

Yang et al. [Multi-Output Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Uncertainties], arXiv-2202.01710v1.
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PINN for PDE dynamical systems

u(t,x)+D[u] =0, t€[0,T], x€Q,
subject to the Initial Condition (IC):
u(0,x) =g(x), x€Q,
and the Boundary Condition (BC):
Blu] =0, t € [0,T], x € 00},

where

@ u(t,x) describes the unknown latent solution that is governed by the PDE system of
Equation;

@ DJ-] is a linear or nonlinear differential operator;

@ B[] is a boundary operator corresponding to Dirichlet, Neumann, Robin, or periodic
boundary conditions.

@ The objective is to find u(t, x) by a deep neural network uy; (¢, x), where w denotes
all tunable parameters of the network (weights and biases).
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PINN for PDE dynamic systems

The objective is to find u(t, x) by a DNN uq (, x), where w is obtained during the training
by minimizing the loss function:

](w) = /\ic]ic(w) + /\bc]bc(w) + Arfr(w)l

where
1 Nic ; : 2
Jie(w) = N Yo (uw(0,x,) — g(xi.)| .
e i=1
. T INL
Joe(w) = Bluw] (tye, *pc)|
Npe (=
1 A duyw g 2
J(w) = 1 2| S5tk w0) + Mo ()

Here {xi }Ne, {ti ,xi }M< and {#,xi}1", can be the vertices of a fixed mesh or points
that are randomly sampled at each iteration of a gradient descent algorithm
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PINN for Inverse Problems with explicite forward model (BPINN-IP)

@ Data generating Model: g = Hf + €.
@ When the forward operator H is known, we can use it.

Traditional NN Physics informed
Data Data .
={ NN (w) |= 5 = NN (w) = i~ H =g;
{g1i, fri} SN {gTi, fri} N g
Loss function: Loss function:

J(w) = L | fri — fni(w)]? J(w) =Yl fri — fni(w) |2
+ ¥ llgri — 8;(w)|?

No care about what Data gr; should
the data g7; are. satisfy the physics
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Bayesian formulation BPINN-IP

@ Supervised training data: {gr;, fri}:

Data ~
{gTi, fi} = :> fNNi = :> (g

Step 1: Modeling the Training data Generation: Simulation or Acquisition:

Bayesian formulation:

Generating or Acquisition

fi— System

— fri
— &Ti

p({frit{fi}) =T T p(Frilfi) with p(fril fi) = N (fril fi, 05:T)

p({gni}l{fi}) =] [ p(gmil f:) with p(grilfi)

Bayes rule:

N(gTi‘Hfi/ Ueil)

p(fil{gri, fri}) < [ 1 p(fril fi 0pil) p(g1il fis veil) p(fi)
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Bayesian formulation BPINN-IP

Step 2: Bayes rule for inference on f;:

Generating| — fri

fi= System | — gri :>’ Inference of f ‘:> i

p(fil{gri fri}) HP(fTi\fz’/ vril)p(gril fis veil) p(fi)

p(fil{gri fri}) < exp [—](fi)]

I = ¥ g Wi = fill + gl — HEIP +Imp(f)

Inference of f;:
o MAP Estimate: f; = argmax ¢ {J(fi)}
@ Sampling: MCMC, VBA, Exploration using p(fi|{gzi, fri})
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BPINN-IP: Step 3: Loss function for Training

Generating | — fr R
fi— Systemg 1 L NN (@) |= fawi = [H] =3,

— &Ti

@ From previous slide:

p(fil{gri, fri}) < exp [—](fi)]
J(fi) = szﬁufﬂ ~ fill+ o llgn — AP = np(7)

1

@ Identifying f; with the output of the NN: fxni:

v e e e L
](fNNZ>_;2Z)finTZ il +2v€ngTl gl
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BPINN-IP: Step 3: Loss function for Training

{fri.gri} = | NN (w) | = fani = [H]=3,
@ Identifying f; with the output of the NN: fyn;i:

J(fnwi) = ZZ;ﬁHfTi — fanill* +

i

1
21)61'

gz — &2
@ As fnni is a function of the NN’s parameters w:

p(wl{gri, fri}) < exp [—](fnni(w))]

@ Adding the prior p(w), we obtain the following loss function:
1 1 .
J(w) = Z ; I fri — fni(w) HZ + Z ?Hgn —gi(w) H2 —Inp(w)
i 1 i €1

with output error, physics part, and the prior.
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BPINN-IP: Supervised case: Training and Testing

ot > S LIS,
p(fnnil{gTis fri}) o< exp [=](fnni)]
T = By i Fonil? + g lm = &l =1 p (o)
@ During the Training: Estimating via MAP or Sampling:
p(w|{gmi, fri}) o< exp [—](fnni(w))]
J(w) = S lni— funite) P+ ol = Bl ~ I p(w)

1

@ During Testing: Use estimated parameters of the NN w*:

gi = | NN (w*) |= f;

p(fj) «exp [=](f;)] with J(f;) = Ungj — Hfj(w")|? = Inp(f;)

A. Mohammad-Djafari, NN/PINN/BPINN-IP, MaxE‘?ﬂZOZS, Auckland, New Zeland 28/55



Supervised / Unsupervised BPINN-IP

@ Training Data: Supervised {gr;, fr:} / Unsupervised {gr:}:

Superwsed / Unsuperwsed
NN ( = i = =
o, Fri] o] fani=[H]= 3

@ Supervised:

p(fil{gri fri}) = Hp(fTi|firUfil)p(gTi|firUeiI) p(fi)

1 1 ~

J(w) =} o I fri = Fani(@) I + 3 —llgni = &;(w)[I* + Inp(w)
i 1 i €1

@ Unsupervised:

p(fil{gri}) o HP(gTi|fi/ veil) p(fi)
ZZ*HgTz (w)]|* + Inp(w)

(]
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BPINN-IP: Unknown forward model parameter estimation

@ When the forward model has unknown parameters H:

Data R
(g f1 frni = [Hg | = 2(0)
Data g7; = | NN(w) |= fnni = |Hg|= g;(0)

We can use two separate NNs, one for Inversion and one for unknown parameters 6.

@ Two separate NNs:
e One for inversion, by optimizing the loss function:

1 . 1 -
J(w) = Zﬁ”gn —g;(w)|I> + ;Hfi — fII?
& f

1

assuming 6 known.
o One for parameter estimation

1 _ 1 _
J(0) = — Yllgri —&i(O)I + — }_116; — 8]
€ i i

—A. Mohammad-Djafari, NN/PINN/BPINN-IP.. . MaxEnt2025, Auckland, New Zeland 30/55



BPINN-IP for inverse problems: Challenges

@ Choice of the structure of the NN

@ Choice of Loss functions and their relative weights
(Advanced Bayesian approach with hyperparameter estimation)

@ Optimization or Sampling algorithms

@ The choice of the structure of the NN for the unknown parameters of the forward
model.
An example is blind deconvolution where the PSF is not known.

@ Convergence study of the whole optimization

@ Well-posedness or degree of ill-posedness of the problem and the generalization
property of the trained model.

o Effective implementation of the whole process for real industrial applications
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1-Simple Dense NN structure using Analytical inversion

Linear inverse problems g = H f + e with known forward model H
and Gaussian priors the solution is given by:

7= (HH'+AI)"'H'g = BH'g

g—| H |=»[ B |=Ff Org—>’TonayersIinearNN‘—>?

@ H' can be implemented by a Neural Net (NN)

@ When H is a convolution operator, H' is also a convolution operator and can be
implemented by a Convolutional Neural Net (CNN)

@ B= (HH'+ AI)~!is, in general, a dense NN.

@ When H is a convolution operator, (HH' + AI) is also a convolution operator and its
inverse B can be approximated by a CNN
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2- Unfolding the iterative optimization algorithms

Linear inverse problem ¢ = H f + e with Gaussian priors, or equivalently with ¢

regularizer: J(f) = llg — HF|3 + Allf13-

Let consider:

J(f) = llg — Hf |3

lterative optimization algorithm:

VI(f) = —2[H'(g — Hf)]

fE = O +a[H' (g — HFW)]

&) = yHig + (I —aH'H) f®

aH'g

f(k) =

(I —«H'H)

@»f(k*‘l)

Unfolding:

P ol £ =Bl -
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/1 Regularization,Unfolding and Neural Networks

Linear inverse problem g = Hf + e with ¢; regularizer:

J(f) = llg = HFIF + Al £l

and an iterative optimization algorithm, such as ISTA

A
FED = prox, (f(k),/\) = Sy/u (aHtg+ (I- sztH)f(k)>

where Sy is a soft thresholding (ST) operator and a« < eig(H'H) is the Lipschitz constant
of the normal operator.

o (I—aH'H)f® can be considered as a filtering operator,

@ aH'g can be considered as a bias term

@ Sy as nonlinear operator

aH'g

FUO—~ (1 — aHtH)@» A< - fE+D
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Deep NN based on unfolding optimization algorithms

Considering a finite number of iterations, we can create a Deep Learning network

structure:
o e — | e L Lw®

Wo=aHand WH =W = (I —aH'H), k=1,--- K.
A more robust, but more costly is to learn all the layers
w® = (1—-a®WH'H), k=1, ---,K.

* Kyong Hwan Jin, Michael T. McCann, Member, IEEE, Emmanuel Froustey, Michael Unser, Fellow, IEEE,
"Deep Convolutional Neural Network for Inverse Problems in Imaging", arxiv:1611.03679v1
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Implementation of BPINN-IP

@ Simulation Based Data set generation:

e Generate a great number of typical physics based IR images fr;;
o Use the forward model to generate corresponding gr;;
e Use {fr;, gri} as afirst Training data set.

@ Choose an appropriate NN structure.

@ Train the NN with simulated data { f1;, g1}, using the Bayesian loss functions
@ Using the Transfert Learning techniques re-train the model with real data.

@ Compress and Upload the trained model and use it for your application.

@ Possibly, re-train partially, the trained model with real operating data:
Digital Twin operating for prediction and diagnosis.
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Inference step in NN, PINN, and in BPINN-IP

Once the NN has been trained, we use it to infer f for new data ot

N Inference step ~ 7
8j NN (@) NNj -

Beyond a point estimate, we would like to quantify the uncertainty of ]A‘NNj.

Inference step ? ,
g = | withuQ { S
NN (@) LNNj

where ?NN]- = [E[f;|g;] is the posterior mean, and fNNj its covariance. For imaging
problems, one can thus visualize both a mean image and a variance (or standard
deviation) image.
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NN, PINN, BPINN-INN, and Digital Twin, for NDT application

Simulated data
(f(S)’g(S)

— : Diagnosis
{ Lab NDT Dlgl:'t;ln;wm Defect maps
D g0
(F7.97) NN / PINN / BPINN-IP ua

remaining life time

zall

{ In- I|ne NDT
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Offline Training vs Online Inference

OFFLINE Training
sim + lab data NN / PINN / BPINN

'

Trained
model

ONLINE Fast inference Defect maps
in-line NDT decisions
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Smart Manufacturing Loop with NDT and Digital Twin

T , NN / PINN / Decision
L Production Tne }_{ Online NOT }» BPINN-IP OK / re-
P SEMEES § 101001 inverse mapping pair / scrap
Y
control & optimisati ( Digital Twin

L updated model

@ Digital twin maintains a virtual replica of the part / system:
e geometry, material properties,
e loading conditions,
e accumulated damage and defects.
@ NN/PINN/BPINN-based inverse NDT provides:
e updated defect maps,
@ uncertainty bounds,
@ inputs to prognosis models (e.g. remaining life).
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Applications

Main objective:
Developping Innovative Diagnostic and Preventive Maintenance systems for industrial
systems (Fans, Blowers, Turbine, Wind Turbine, etc) using:

@ Vibration, Acoustics, Infrared, and Visible images.
Methods:
@ Vibration analysis using Fourier and Wavelet analysis
@ Acoustics: Sound Source localization and estimation using Acoustic imaging
@ Infrared imaging: To monitor the temperature distribution
@ Visible images to monitor the system and its environment.
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Infrared imaging

f(xy)
.| Emissivity Diffusion
. i t C luti
=/ simulator | Simulator.
$(f) §=hx¢
gxy) = [[ nGx =,y =y)e(f(<,y')) d¥' a/
8(x,y) = h(x,y) *¢(f(x,y))
_ _[ef + (A —e)T0 + (exp [—kd] — 1) T, | '"

g=hxo(f) +e
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Results in infrared imaging
Examples of Training data sets
£ £T
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Results in infrared imaging

Examples of Testing data sets
fT fT
T

i
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Results in infrared imaging

Comparison between NN, PINN, and BPINN-IP

ar [ oT or
Data Data Data Data
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Results in infrared imaging

Outputs of BPINN-IP: Means and Variances images

sleielr

Data Data Data Data

Variance Variance Variance Variance
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Results in infrared imaging

Examples of real infrared images

Real IR input (g) NN reconstruction (f_NN) PINN reconstruction (f_PINN)

e
BPINN reconstruction (single pass) BPINN mean (MC-dropout, T=16)

BPINN variance (uncertainty)
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Results in infrared imaging

Examples of real infrared images

g_deg (blur+noise) NN
f_true_real PSNR=22.07 dB PSNR=22.49 dB

3
'

PINN BPINN (single) BPINN mean (MC, T=16)
PSNR=22.99 dB PSNR=21.01 dB PSNR=21.34 dB

+
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BPINN-IP for biological application

@ Dynamic models of large-scale Brain activity using Bayesian Physics-Informed
Neural Networks

@ Understanding large-scale brain dynamics is essential for decoding cognitive
processes and diagnosing neurological disorders.

@ A simple case of an univariate neural activity u(x, t)

du(x,t)

2 :—u(x,t)—I—/Qh(x,x’)f(u(x’,t))dx’—i—I(x,t),

where h(x, x") is the connectivity kernel, f(u) is a nonlinear activation function, and
I(x,t) represents external inputs.

@ Given h(x,x"), f(u), I(x,t), the initial conditions u(x,0), and the parameter 7, the
neural activity u(x, t) can be computed for all positions x and time t.
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BPINN-IP for biological application

@ But, in practice, we may only have some partial observation data
{u; = u(xl, i),i=1,---,N}, and we want to obtain u(x, t) for all x € D, and

t=10,---,T| and estimate 7.
N N Training s Using
1 > ] . f.
N NN(w) |— u, b NN(w) |— @, P NN(w) | — uw(xjt;)

@ BPINN-IP: w ~ p(w) : £ = Laata + Lonysics + Lorior

N wr — U )?
Lata = Z (Mw(xi, k) — ui)zl 'Cprior = Zuizyk)/
i=1 k 4
M

Lophysics —]Z < agt +uw — / x, ') fug (X, 1)) dx’ — I(x, t)>2.
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Physics Nobel Prize 2024

Physics and Machine Learning joined forces to win the Physics Nobel 2024

“for foundational discoveries and inventions that enable machine learning with artificial neural
networks.”

John J. Hopfield :

Geofrey Hinton:

Boltzman thermodynamic
Hopfield network

borrows the physics of
spin networks: it trains Optimization via

and makes inferences
by minimizing an Hopfield and Hinton free energy
developed approximate models and

Boltzman Machine

energy function: demonstrated that, when combined Prob(E) = e BT
Total Energy = Z Energy(s;) with plau5ible natural Iéws, cotnplex 2 s
7 computations are possible. This
serves as a proof-of-principle that —T'log (Prob) = Free Energy

elements of intelligence could emerge . .
== Z Z wijs; + by | 85 even in these simplified systems. The seminal work of J. Hopfield 1982
i j#i N . . and G. Hinton et. al. 1985.
implications for ML are just
secondary benefits.
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Near Future Research Directions

@ Model based, Physics Informed Neural Networks methods for all our industrial
applications: Vibration, Acoustics, Infrared, and Visible images, as well as
Multi-Physics combinations.

@ Introduction of Quantum Computation Algorithms for the above mentioned
applications to be able to scale up our PINN methods, both during the training and
validation steps.

@ Fast Computation is very important for the development of Digital Twins for all the
industrial products, both during the design and during the maintenance.

@ Uncertainty quantification can be done via the Bayesian Inference.

Bayesian Inference

[ Physics Informed NN } [Quantum Computation]
Y

[ Al 1: How ? J [ Digital Twin } [ Al 2 WHY ? ]

{ Industrial Applications j
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Near Future Research Directions (Cooperation requested)

[ Bayesian Inference ]

[ Physics Informed NN j [Quantum Computation}
\ v /
( Alt:Hw? | [ Digital Twin | [ Al2: WHY ? |
Industrial Applications
Biological modeling
Health related physical modeling

@ Bilateral (France-Canada) or Trilateral (France-Canada-China) cooperations
@ France: CNRS, INSERM, INRIA, Universities, ...

@ Canada: Concordia, Sherbrook, ...

@ China: EIT Ningbo, HDU, Hangzhou, Zhejiang, ...

@ Possibilities of creating International labs
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BPINN: Further Reading and References

A. Mohammad-Djafari, Regularization, Bayesian Inference, and Machine Learning Methods
for Inverse Problems, Entropy, 2021.

A. Mohammad-Djafari, N. Chu, L. Wang, L. Yu, Bayesian Inference and Deep Learning for
Inverse Problems, Physical Sciences Forum, 2023,
https://doi.org/10.3390/ps£2025012010

A. Fallah, R. Wang, A. Mohammad-Djafari, Physics-Informed Neural Networks with Unknown
PDE: An Application in Multivariate Time Series, Entropy, 2025, arxiv.org/abs/2503.20144

R. K. Niven, A. Mohammad-Djafari, L. Cordier, M. Abel, M. Quade, Bayesian Identification of
Dynamical Systems, Proceedings, 2019, https://doi.org/10.3390/psf2025012017

A. Mohammad-Djafari, Digital Twins in Industrial Applications: Concepts, Mathematical
Modeling, and Use Cases, preprint, arxiv.org/abs/2507.12468

A. Mohammad-Djafari, Bayesian Physics-Informed Neural Networks for Inverse Problems
(BPINN-IP): Application in Infrared Image Processing, in revision J. of Franklin Institue,
arxiv.org/abs/2512.02495

https://www.mdpi.com/search?authors=Mohammad-Djafari
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Thanks

Thank you
for
listening

Questions ?

SCIENCE
RAINING

Comments ?
https://adjafari.github.io/isct/
djafariQieee.org
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