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Motivations

Complex multi-physics systems (fluids, heat transfer, mechanics, . . . ).
High-fidelity numerical solvers are accurate but expensive.
Industrial workflows require fast evaluations for design and control.
Build surrogate models that are:

Fast: real-time or near real-time predictions.
Physics-consistent: obey PDEs and constraints.
Probabilistic: provide uncertainty quantification (UQ).

PINNs are a promising framework in this direction.
BPINNs extend PINNs and give the possibility of uncertainty quantification (UQ)
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Surrogate Modeling via Neural Networks

Complex forward models

Governing equations: ODE, PDE,
Integral equations.

High-dimensional state-space,
Fine discretization.

Expensive simulation codes (CFD, FEM, . . . ).

Neural-network surrogate

Learn a mapping

θ 7→ f ≈ F (θ),

where θ gathers parameters / inputs and
f outputs.

Once trained, evaluation cost is very low.

Complex
Forward Model

(ODE/PDE)
Integral Equations

Neural Network
Surrogate

Training data

Simple & fast inference
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Scientific Computing history
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PINN Success and the Rise of BPINN

More than 1000 papers on PINNs in the last few years, covering:
Fluid dynamics, Aero dynamics, Solid mechanics, Robotics
Seismology, Geophysics, Astronomy
Medical and Biological modeling and imaging,
Industrial designing, testing, diagnostics and maintenance, Digital Twins.

A smaller but growing subset focuses on Bayesian variants:
Uncertainty quantification in parameters and predictions,
Robustness to noisy or scarce data,
Quantification of modelling and measurement errors.
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Forward and Inverse problems

Brain imaging:
Forward problem: Given the known source f predict the data g
Brain activity EEG or MEG data

f =⇒ Predict Data g = H f + ϵ

Estimate f ⇐= Observed g
Inverse problem:

Given the observed data g, estimate the unknown source f .
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Model Based methods

Use a mathematical Forward model (Physics) relating the unknowns f to the
observable g;
Get the data (observables), and use Inversion methods to infer the interested
unknown quantity, a point estimate f̂ or a probability distribution p( f |g).
Needs:
A Forward model, in general, Ordinary or Partial Differential Equations (ODE / PDE),
Integral Equations, Integro-Differential Equations;
In general, needs a discretization step to get a finite dimensional equations to
implement it: g = H( f ) + ϵ.
Use Regularization or Bayesian inference methods to estimate or to infer the
interested unknowns quantities
Needs in general a great computational ressources, in particular, if we want also
quantify uncertainties.

A. Mohammad-Djafari, NN/PINN/BPINN-IP, MaxEnt2025, Auckland, New Zeland 8/55



Data Driven NN methods

Use a great amount of labeled data (Input/Output) to learn a model, and then use it.
This needs to:
Choose a NN structure: Number of input and output nodes, number of hidden layers,
type of activation function, . . .
Get a great amount of labeled data for training, some more reliable for validation
Choose a criterion of optimality (loss function), an optimization algorithms (SG,
ADAM, . . . ), some hyper parameters such as learning rate,..
Train the model, Validate it, Test it on a set of test data, measure the performances,
and finally
Use it (Inference step).
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Brain imaging: Using Neural Network (NN)

Real forward model is too complexe to be approximated by a linear operation
Even if the forward model could be known, the inversion is very costly
Objective: Replace the inversion operation by a NN
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Input
variables
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variables

x̂1

x̂2
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Output
variables

Different Steps:
1- Choosing an appropriate structure, 2- Get a Training data set, 3- Train the model,
4- Evaluate its performances, and
5- Upload and implement it for using.
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Model Based / Data Driven

Model Based Data based NN
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g = H f + ϵ

{
gTi
f Ti

}
⇒ NN(w)

Training
⇒ ŵ

f̂ = arg min
f

{
∥g − H f∥2 + λ∥ f∥2} gTi → w → f̂ , J(w) = ∥ f Ti − f̂∥2

p( f |g) = p(g| f )p( f )
p(g)

gj ⇒ ŵ ⇒ f j
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Deep Neural Network Learning work flow:
Learning (Training) and Inference (Testing) (Testing)
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Inverse problems: Regularization and Bayesian inference

Inverse problems: g = H( f ) + ϵ

Acoustic imaging / Sound source localization
Vibration source localization using vibration sensors
Infrared and Thermal imaging using IR camera
Dynamical systems, ODE, PDE

Main methods:
Analytical inversion methods for simple geometrical shapes
Regularisation based methods: SVD, Optimization

f̂ = arg min
f

{
∥g − H f∥2 + λR( f )

}
Our Focus: Bayesin inference: g = H f + ϵ

p( f |g) = p(g| f ) p( f )
p(g)

∝ p(g| f ) p( f )

A. Mohammad-Djafari, NN/PINN/BPINN-IP, MaxEnt2025, Auckland, New Zeland 13/55



Bayesian Inference for Inverse Problems

Forward model: g = H( f ) + ϵ

Likelihood: Uncertainty of errors p(g| f , H)

Prior knowledge, Desired property of the solution: p( f )
Bayes rule:

p( f |g) = p(g| f , H) p( f )
p(g|H)

∝ p(g| f , H) p( f )

Use the posterior to:
Define estimators (MAP, PM);
Compute probabilities and make decisions P( f ∈ Ω)
Generate samples (MCMC, Nested Sampling, ...)
Quatify uncertainties (variances, covariances, entropies, ...)
Model selection

P(Hk|g) ∝ p(g|Hk) =
∫∫

p(g| f , Hk)p( f ) d f
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Bayesian inference: Linear g = H f + ϵ and Gaussian case
v f vϵ

f

g
H

p(g| f , vϵ) = N (g|H f , vϵ I) ∝ exp
[
− 1

2vϵ
∥g − H f∥2

]p( f |v f ) = N ( f |0, v f I) ∝ exp
[
− 1

2v f
∥ f∥2

]

Bayes: p( f |g, v f , vϵ) = N ( f | f̂ , Σ̂)

f̂ = [H ′H + λI]−1H ′g
Σ̂ = vϵ[H ′H + λI]−1, λ = vϵ

v f
Computation of f̂ : Expected value = Mode :

f̂ = arg max f
{

p( f |g, v f , vϵ)
}
= arg min f {J( f )}

J( f ) = ∥g − H f∥2
2 + λ∥ f∥2

2, λ =
vϵ

v fComputation of Σ̂ is much more costly: VBA, MCMC sampling,
Perturbation-Optimization, Langevin sampling, ...
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IV- Physics Informed Neural Networks (PINN)

Main idea:

NNs are universal function approximators. Therefore a NN, provided that it is deep
enough, can approximate any function, and also the solution for the differential
equations.

Computing the derivatives of a NN output with respect to any of its input (and the
model parameters during backpropagation), using Automatic Differentiation (AD), is
easy and cheap. This is actually what made NNs so efficient and successful.
Usually NNs are trained to fit the data, but do not care from where come those data.
Physics Informed: Besides fitting the data, fit also the equations that govern the
system which produced those data.
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Physics based or Physics Informed: Besides fitting the data, fit also the equations
that govern the system which produced those data.
In this way, the predictions will be much more precise and will generalize much better.

du
dt = f (t, u), u(x, t)

{xi, ti} → NN(w) → ûi → J(w) = ∑
i
(ui − ûi)

2 + ∑
i
[
du
dt

− f (t, u)]2i
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PINN with ODE and PDE forward models

PINN: Concept proposed by Raissi et al., back in 2019:
Create a hybrid model where both the observational data and the known physical
knowledge (represented as differential equations) are present in model training.
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PINN for dynamical system identification


∂u1
∂t = e−

t
10 u2u3

∂u2
∂t = u1u3

∂u3
∂t = −2u1u2


∂u1
∂t = f1 = e−

t
10 u2u3

∂u2
∂t = f2 = u1u3

∂u3
∂t = au1u2 + b

source: https://arxiv.org/abs/2307.08107A. Mohammad-Djafari, NN/PINN/BPINN-IP, MaxEnt2025, Auckland, New Zeland 19/55



PINN with ODE and PDE: Multi-output model

PDE:
Lu (x) = f (x), x ∈ Ω,

Boundary conditions:
u(x) = h(x), x ∈ ∂Ωh,
∂u(x)

∂x = g(x), x ∈ ∂Ωg,

Observed data points:
u(xu

i ) = um(xu
i ), i = 1, 2, ..., n

f (x f
i ) = fm(x f

i ), i = 1, 2, ..., m

x

y

z

t

y1

.

.

.

yN

u1

.

.

.

uM

∂u
∂t

∇u

∆u

P(u)

Loss

Input layer
Hidden layer

Output layer

Neural networks

Loss function

Neural Network:
{

uNN(x; w, b) = TmoTm−1o · · · oT2oT1(x),
T j(·) = σj(wj × ·+ bj), j = 1, 2, . . . , n.

Examples:

{
λ ∂2u

∂x2 = f (x), x ∈ [−0.7, 0.7]

λ
(

∂2u
∂x2 +

∂2u
∂y2

)
+ u

(
u2 − 1

)
= f (x), x, y ∈ [−1, 1].

Yang et al. [Multi-Output Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Uncertainties], arXiv-2202.01710v1.
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PINN for PDE dynamical systems

u(t, x) +D[u] = 0, t ∈ [0, T], x ∈ Ω,

subject to the Initial Condition (IC):

u(0, x) = g(x), x ∈ Ω,

and the Boundary Condition (BC):

B[u] = 0, t ∈ [0, T], x ∈ ∂Ω,

where
u(t, x) describes the unknown latent solution that is governed by the PDE system of
Equation;
D[·] is a linear or nonlinear differential operator;
B[·] is a boundary operator corresponding to Dirichlet, Neumann, Robin, or periodic
boundary conditions.
The objective is to find u(t, x) by a deep neural network uw(t, x), where w denotes
all tunable parameters of the network (weights and biases).
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PINN for PDE dynamic systems

The objective is to find u(t, x) by a DNN uw(t, x), where w is obtained during the training
by minimizing the loss function:

J(w) = λic Jic(w) + λbc Jbc(w) + λr Jr(w),

where

Jic(w) =
1

Nic

Nic

∑
i=1

∣∣∣uw(0, xi
ic)− g(xi

ic)
∣∣∣2 ,

Jbc(w) =
1

Nbc

Nbc

∑
i=1

∣∣∣B[uw](ti
bc, xi

bc)
∣∣∣2 ,

Jr(w) =
1

Nr

Nr

∑
i=1

∣∣∣∣∂uw
∂t

(ti
r, xi

r) +N [uw](ti
r, xi

r)

∣∣∣∣2 .

Here {xi
ic}

Nic
i=1, {ti

bc, xi
bc}

Nbc
i=1 and {ti

r, xi
r}Nr

i=1 can be the vertices of a fixed mesh or points
that are randomly sampled at each iteration of a gradient descent algorithm.
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PINN for Inverse Problems with explicite forward model (BPINN-IP)

Data generating Model: g = H f + ϵ.
When the forward operator H is known, we can use it.

Traditional NN

Data
{gTi, f Ti}

⇒ NN (w) ⇒ f NNi

Loss function:
J(w) = ∑i ∥ f Ti − f NNi(w)∥2

No care about what
the data gTi are.

Physics informed

Data
{gTi, f Ti}

⇒ NN (w) ⇒ f NNi⇒ H ⇒ĝi

Loss function:
J(w) = ∑i ∥ f Ti − f NNi(w)∥2

+∑i ∥gTi − ĝi(w)∥2

Data gTi should
satisfy the physics
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Bayesian formulation BPINN-IP

Supervised training data: {gTi, f Ti}:

Data
{gTi, f Ti}

⇒ NN (w) ⇒ f NNi ⇒ H ⇒ ĝi

Bayesian formulation:
Step 1: Modeling the Training data Generation: Simulation or Acquisition:

f i →
Generating or Acquisition

System
→ f Ti
→ gTi

p({ f Ti}|{ f i}) = ∏
i

p( f Ti| f i) with p( f Ti| f i) = N ( f Ti| f i, v f i I)

p({gTi}|{ f i}) = ∏
i

p(gTi| f i) with p(gTi| f i) = N (gTi|H f i, vϵi I)

Bayes rule:

p( f i|{gTi, f Ti}) ∝ ∏
i

p( f Ti| f i, v f i I)p(gTi| f i, vϵi I) p( f i)
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Bayesian formulation BPINN-IP

Step 2: Bayes rule for inference on f i:

f i →
Generating

System
→ f Ti
→ gTi

⇒ Inference of f ⇒ f̂ i

p( f i|{gTi, f Ti}) ∝ ∏
i

p( f Ti| f i, v f i I)p(gTi| f i, vϵi I) p( f i)

p( f i|{gTi, f Ti}) ∝ exp [−J( f i)]

J( f i) = ∑
i

1
2v f i

∥ f Ti − f i∥2 +
1

2vϵi
∥gTi − H f i∥2 + ln p( f i)

Inference of f i:
MAP Estimate: f̂ i = arg max f i

{J( f i)}
Sampling: MCMC, VBA, Exploration using p( f i|{gTi, f Ti})
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BPINN-IP: Step 3: Loss function for Training

f i →
Generating

System
→ f Ti
→ gTi

⇒ NN (w) ⇒ f NNi ⇒ H ⇒ ĝi

From previous slide:

p( f i|{gTi, f Ti}) ∝ exp [−J( f i)]

J( f i) = ∑
i

1
2v f i

∥ f Ti − f i∥2 +
1

vϵi
∥gTi − H f i∥2 − ln p( f i)

Identifying f i with the output of the NN: f NNi:

J( f NNi) = ∑
i

1
2v f i

∥ f Ti − f NNi∥2 +
1

2vϵi
∥gTi − ĝi∥

2
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BPINN-IP: Step 3: Loss function for Training

{ f Ti, gTi} ⇒ NN (w) ⇒ f NNi ⇒ H ⇒ ĝi

Identifying f i with the output of the NN: f NNi:

J( f NNi) = ∑
i

1
2v f i

∥ f Ti − f NNi∥2 +
1

2vϵi
∥gTi − ĝi∥

2

As f NNi is a function of the NN’s parameters w:

p(w|{gTi, f Ti}) ∝ exp [−J( f NNi(w))]

Adding the prior p(w), we obtain the following loss function:

J(w) = ∑
i

1
v f i

∥ f Ti − f NNi(w)∥2 + ∑
i

1
vϵi

∥gTi − ĝi(w)∥2 − ln p(w)

with output error, physics part, and the prior.
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BPINN-IP: Supervised case: Training and Testing

Data
{gTi, f Ti}

⇒ NN (w) ⇒ f NNi ⇒ H ⇒ ĝi

p( f NNi|{gTi, f Ti}) ∝ exp [−J( f NNi)]

J( f NNi) = ∑
i

1
2v f i

∥ f Ti − f NNi∥2 +
1

2vϵi
∥gTi − ĝi∥

2 − ln p( f NNi)

During the Training: Estimating via MAP or Sampling:

p(w|{gTi, f Ti}) ∝ exp [−J( f NNi(w))]

J(w) = ∑
i

1
v f i

∥ f Ti − f NNi(w)∥2 + ∑
i

1
vϵi

∥gTi − ĝi(w)∥2 − ln p(w)

During Testing: Use estimated parameters of the NN w∗:

g j ⇒ NN (w∗) ⇒ f j

p( f j) ∝ exp
[
−J( f j)

]
with J( f j) =

1
vϵ
∥g j − H f j(w∗)∥2 − ln p( f j)
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Supervised / Unsupervised BPINN-IP

Training Data: Supervised {gTi, f Ti} / Unsupervised {gTi}:

Supervised /
{gTi, f Ti}

Unsupervised
{gTi}

⇒ NN (w) ⇒ f NNi ⇒ H ⇒ ĝi

Supervised:

p( f i|{gTi, f Ti}) ∝ ∏
i

p( f Ti| f i, v f i I)p(gTi| f i, vϵi I) p( f i)

J(w) = ∑
i

1
v f i

∥ f Ti − f NNi(w)∥2 + ∑
i

1
vϵi

∥gTi − ĝi(w)∥2 + ln p(w)

Unsupervised:
p( f i|{gTi}) ∝ ∏

i
p(gTi| f i, vϵi I) p( f i)

J(w) = ∑
i

∑
i

1
vϵi

∥gTi − ĝi(w)∥2 + ln p(w)
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BPINN-IP: Unknown forward model parameter estimation

When the forward model has unknown parameters Hθ:

Data
{gTi, f Ti}

⇒ NN (w) ⇒ f NNi ⇒ Hθ ⇒ ĝi(θ)

Data gTi ⇒ NN(w) ⇒ f NNi ⇒ Hθ ⇒ ĝi(θ)

We can use two separate NNs, one for Inversion and one for unknown parameters θ.
Two separate NNs:

One for inversion, by optimizing the loss function:

J(w) = ∑
i

1
σ2

ϵ
∥gTi − ĝi(w)∥2 +

1
σ2

f
∥ f i − f̄∥2

assuming θ known.
One for parameter estimation

J(θ) =
1
σ2

ϵ
∑

i
∥gTi − ĝi(θ)∥

2 +
1
σ2

f
∑

i
∥θi − θ̄∥2

this time fixing the parameters w of NN.
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BPINN-IP for inverse problems: Challenges

Choice of the structure of the NN
Choice of Loss functions and their relative weights
(Advanced Bayesian approach with hyperparameter estimation)
Optimization or Sampling algorithms
The choice of the structure of the NN for the unknown parameters of the forward
model.
An example is blind deconvolution where the PSF is not known.
Convergence study of the whole optimization
Well-posedness or degree of ill-posedness of the problem and the generalization
property of the trained model.
Effective implementation of the whole process for real industrial applications
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1-Simple Dense NN structure using Analytical inversion

Linear inverse problems g = H f + ϵ with known forward model H
and Gaussian priors the solution is given by:

f̂ = (HH t + λI)−1H tg = BH tg

g → H t → B → f̂ or g → Two layers linear NN → f̂

H t can be implemented by a Neural Net (NN)
When H is a convolution operator, H t is also a convolution operator and can be
implemented by a Convolutional Neural Net (CNN)
B = (HH t + λI)−1 is, in general, a dense NN.
When H is a convolution operator, (HH t + λI) is also a convolution operator and its
inverse B can be approximated by a CNN
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2- Unfolding the iterative optimization algorithms

Linear inverse problem g = H f + ϵ with Gaussian priors, or equivalently with ℓ2
regularizer: J( f ) = ∥g − H f∥2

2 + λ∥ f∥2
2.

Let consider:
J( f ) = ∥g − H f∥2

2 ∇J( f ) = −2[H t(g − H f )]

Iterative optimization algorithm:

f (k+1) = f (k) + α[H t(g − H f (k))]

f (k+1) = αH tg + (I − αH tH) f (k)

f (k)- (I − αH tH)-����
+ - f (k+1)
?

αH tg

Unfolding:
f 0 → :: → f 1 → :: → · · · → :: → f K
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ℓ1 Regularization,Unfolding and Neural Networks

Linear inverse problem g = H f + ϵ with ℓ1 regularizer:

J( f ) = ∥g − H f∥2
2 + λ∥ f∥1

and an iterative optimization algorithm, such as ISTA

f (k+1) = Proxℓ1

(
f (k), λ

) △
= Sλ/α

(
αH tg + (I − αH tH) f (k)

)
where Sθ is a soft thresholding (ST) operator and α ≤ eig(H tH) is the Lipschitz constant
of the normal operator.

(I − αH tH) f (k) can be considered as a filtering operator,
αH tg can be considered as a bias term
Sθ as nonlinear operator

f (k)- (I − αH tH)-����
+ - �

�
- f (k+1)

?
αH tg
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Deep NN based on unfolding optimization algorithms

Considering a finite number of iterations, we can create a Deep Learning network
structure:

- W (1) -����
+ - -
?

W0

?

g����

- W (2) -����
+ - -
?

W0

?

g����

- W (K) -����
+ - -
?

W0

?

g����

...f̂
(1)

f̂
(K)

W0 = αH and W (k) = W = (I − αH tH), k = 1, · · · , K.
A more robust, but more costly is to learn all the layers
W (k) = (I − α(k)H tH), k = 1, · · · , K.
* Kyong Hwan Jin, Michael T. McCann, Member, IEEE, Emmanuel Froustey, Michael Unser, Fellow, IEEE,

"Deep Convolutional Neural Network for Inverse Problems in Imaging", arxiv:1611.03679v1
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Implementation of BPINN-IP

Simulation Based Data set generation:
Generate a great number of typical physics based IR images f Ti;
Use the forward model to generate corresponding gTi;
Use { f Ti, gTi} as a first Training data set.

Choose an appropriate NN structure.

Train the NN with simulated data { f Ti, gTi}, using the Bayesian loss functions

Using the Transfert Learning techniques re-train the model with real data.

Compress and Upload the trained model and use it for your application.

Possibly, re-train partially, the trained model with real operating data:
Digital Twin operating for prediction and diagnosis.
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Inference step in NN, PINN, and in BPINN-IP

Once the NN has been trained, we use it to infer f for new data g j:

g j ⇒ Inference step
NN (ŵ)

⇒ f̂ NNj .

Beyond a point estimate, we would like to quantify the uncertainty of f̂ NNj.

g j ⇒
Inference step

with UQ
NN (ŵ)

⇒
{

f̂ NNj

Σ̂NNj

,

where f̂ NNj = E[ f j|g j] is the posterior mean, and Σ̂NNj its covariance. For imaging
problems, one can thus visualize both a mean image and a variance (or standard
deviation) image.
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NN, PINN, BPINN-INN, and Digital Twin, for NDT application

Simulated data
(f (s), g(s))

Lab NDT
(f (l), g(l))

In-line NDT
g(p)

Digital Twin
using

NN / PINN / BPINN-IP

Diagnosis
Defect maps

UQ
remaining life time
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Offline Training vs Online Inference

OFFLINE
sim + lab data

Training
NN / PINN / BPINN

Trained
model

ONLINE
in-line NDT

Fast inference
Defect maps

decisions

A. Mohammad-Djafari, NN/PINN/BPINN-IP, MaxEnt2025, Auckland, New Zeland 39/55



Smart Manufacturing Loop with NDT and Digital Twin

Production line
process P

Online NDT
sensors / robots

NN / PINN /
BPINN-IP

inverse mapping

Decision
OK / re-

pair / scrap

Digital Twin
updated model

control & optimisation

Digital twin maintains a virtual replica of the part / system:
geometry, material properties,
loading conditions,
accumulated damage and defects.

NN/PINN/BPINN-based inverse NDT provides:
updated defect maps,
uncertainty bounds,
inputs to prognosis models (e.g. remaining life).
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Applications

Main objective:
Developping Innovative Diagnostic and Preventive Maintenance systems for industrial
systems (Fans, Blowers, Turbine, Wind Turbine, etc) using:

Vibration, Acoustics, Infrared, and Visible images.
Methods:

Vibration analysis using Fourier and Wavelet analysis
Acoustics: Sound Source localization and estimation using Acoustic imaging
Infrared imaging: To monitor the temperature distribution
Visible images to monitor the system and its environment.
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Infrared imaging

f (x, y)

→
Emissivity

environment
Simulator

ϕ( f )

→

ϕ(x, y)

→
Diffusion

Convolution
Simulator
g = h ∗ ϕ

→

g(x, y)

g(x, y) =
∫∫

h(x − x′, y − y′)ϕ( f (x′, y′)) dx′ dy′

g(x, y) = h(x, y) ∗ ϕ( f (x, y))

ϕ( f ) = ϕθ( f ) =
[

e f n + (1 − e)Tn
u + (exp [−kd]− 1)Ta

exp [kd]

]1/n

g = h ∗ ϕ( f ) + ϵ
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Results in infrared imaging

Examples of Training data sets
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Results in infrared imaging

Examples of Testing data sets
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Results in infrared imaging

Comparison between NN, PINN, and BPINN-IP
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Results in infrared imaging

Outputs of BPINN-IP: Means and Variances images

A. Mohammad-Djafari, NN/PINN/BPINN-IP, MaxEnt2025, Auckland, New Zeland 46/55



Results in infrared imaging

Examples of real infrared images
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Results in infrared imaging

Examples of real infrared images
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BPINN-IP for biological application

Dynamic models of large-scale Brain activity using Bayesian Physics-Informed
Neural Networks
Understanding large-scale brain dynamics is essential for decoding cognitive
processes and diagnosing neurological disorders.
A simple case of an univariate neural activity u(x, t)

τ
∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

h(x, x′) f (u(x′, t)) dx′ + I(x, t),

where h(x, x′) is the connectivity kernel, f (u) is a nonlinear activation function, and
I(x, t) represents external inputs.
Given h(x, x′), f (u), I(x, t), the initial conditions u(x, 0), and the parameter τ, the
neural activity u(x, t) can be computed for all positions x and time t.
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BPINN-IP for biological application

But, in practice, we may only have some partial observation data
{ui = u(xi, ti), i = 1, · · · , N}, and we want to obtain u(x, t) for all x ∈ D, and
t = [0, · · · , T] and estimate τ.

x →
t → NN(w) → u,

xi →
ti →

Training
NN(w) → ŵ,

xj →
tj →

Using
NN(w) → uw(xj, tj)

BPINN-IP: w ∼ p(w) : L = Ldata + Lphysics + Lprior

Ldata =
N

∑
i=1

(uw(xi, ti)− ui)
2 , Lprior = ∑

k

(wk − µk)
2

σ2
k

,

Lphysics =
M

∑
j=1

(
τ

∂uw
∂t

+ uw −
∫

Ω
h(x, x′) f (uw(x′, t)) dx′ − I(x, t)

)2

.
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Physics Nobel Prize 2024

Physics + NN  → Nobel Prize 2024

John J. Hopfield :

Hopfield network 
borrows the physics of 
spin networks: it trains 
and makes inferences 
by minimizing an 
energy function:

Physics and Machine Learning joined forces to win the Physics Nobel 2024

“for foundational discoveries and inventions that enable machine learning with artificial neural 
networks.”

Geofrey Hinton:

Boltzman thermodynamic

Boltzman Machine

Optimization via 
free energy

Hopfield and Hinton 
developed approximate models and 
demonstrated that, when combined 
with plausible natural laws, complex 
computations are possible. This 
serves as a proof-of-principle that 
elements of intelligence could emerge 
even in these simplified systems. The 
implications for ML are just 
secondary benefits.

seminal work of J. Hopfield 1982 
and G. Hinton et. al. 1985. 
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Near Future Research Directions

Model based, Physics Informed Neural Networks methods for all our industrial
applications: Vibration, Acoustics, Infrared, and Visible images, as well as
Multi-Physics combinations.
Introduction of Quantum Computation Algorithms for the above mentioned
applications to be able to scale up our PINN methods, both during the training and
validation steps.
Fast Computation is very important for the development of Digital Twins for all the
industrial products, both during the design and during the maintenance.
Uncertainty quantification can be done via the Bayesian Inference.

Physics Informed NN

Bayesian Inference

Quantum Computation

Digital TwinAI 1: How ? AI 2: WHY ?

Industrial Applications
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Near Future Research Directions (Cooperation requested)

Physics Informed NN

Bayesian Inference

Quantum Computation

Digital TwinAI 1: How ? AI 2: WHY ?
Industrial Applications
Biological modeling

Health related physical modeling

Bilateral (France-Canada) or Trilateral (France-Canada-China) cooperations
France: CNRS, INSERM, INRIA, Universities, ...
Canada: Concordia, Sherbrook, ...
China: EIT Ningbo, HDU, Hangzhou, Zhejiang, ...
Possibilities of creating International labs
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BPINN: Further Reading and References

A. Mohammad-Djafari, Regularization, Bayesian Inference, and Machine Learning Methods
for Inverse Problems, Entropy, 2021.

A. Mohammad-Djafari, N. Chu, L. Wang, L. Yu, Bayesian Inference and Deep Learning for
Inverse Problems, Physical Sciences Forum, 2023,
https://doi.org/10.3390/psf2025012010

A. Fallah, R. Wang, A. Mohammad-Djafari, Physics-Informed Neural Networks with Unknown
PDE: An Application in Multivariate Time Series, Entropy, 2025, arxiv.org/abs/2503.20144

R. K. Niven, A. Mohammad-Djafari, L. Cordier, M. Abel, M. Quade, Bayesian Identification of
Dynamical Systems, Proceedings, 2019, https://doi.org/10.3390/psf2025012017

A. Mohammad-Djafari, Digital Twins in Industrial Applications: Concepts, Mathematical
Modeling, and Use Cases, preprint, arxiv.org/abs/2507.12468

A. Mohammad-Djafari, Bayesian Physics-Informed Neural Networks for Inverse Problems
(BPINN-IP): Application in Infrared Image Processing, in revision J. of Franklin Institue,
arxiv.org/abs/2512.02495

https://www.mdpi.com/search?authors=Mohammad-Djafari

arxiv.org/search/?query=Mohammad-Djafari&searchtype=authorA. Mohammad-Djafari, NN/PINN/BPINN-IP, MaxEnt2025, Auckland, New Zeland 54/55



Thanks

Thank you
for

listening

Questions ?

Comments ?
https://adjafari.github.io/isct/

djafari@ieee.org
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