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MaxEnt

This is my favourite interpretation of maximum entropy, which | got

from Ariel Caticha.
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MaxEnt

This is my favourite interpretation of maximum entropy, which | got

from Ariel Caticha.

Starting from a prior distribution 7(x), and given a constraint on
probability distributions, the updated distribution is given by

maximising the relative entropy
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subject to the given constraint and the normalisation condition.
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MaxEnt

If you select the right constraint — that the probability of the ‘data’
proposition should now be 1, this is equivalent to the prior —

posterior update of Bayesian inference, but is more general.
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MaxEnt

If you select the right constraint — that the probability of the ‘data’
proposition should now be 1, this is equivalent to the prior —

posterior update of Bayesian inference, but is more general.

However, the generalisation is hard to use in practice because it is
unclear where constraints that refer to probabilities (Jaynes’ “testable

information” which is actually untestable) would come from.

3/21



Expectation constraints

Consider some function f(x) whose expected value is given
(somehow). The updated distribution is given by the well known

result:
p(x) o< m(x) exp [Af(x)] . (2)

The value of )\ is selected to ensure that the correct expected value of
f() is obtained.
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Expectation constraints: general version

With more than one expectation specified:

p(x) o< 7(x) exp [Z /\ffi(X)] : (3)

The values of the As ares selected to ensure that the correct expected

values of f;() are obtained.

5/21



Exponential Example

Consider n positive quantities xi, ..., X, and an expectation constraint

on the average T:

<T>=<%ZX/‘>=M *)
i=1
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Exponential Example

Consider n positive quantities xi, ..., X, and an expectation constraint

on the average T:
1 n
<T>:<;ZXi>ZM (4)
i=1

The MaxEnt result is independent exponential distributions:

o) =] Lo (—%) | (5)

i=1
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Hierarchical Reflex

People often think “but what if y is really unknown, so this is only

the prior conditional on u?". This leads to a hierarchical model with

bl %) = p(1) 1211 oo (—g) , (6)

but the MaxEnt interpretation is lost. Can we bring it back?
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Hierarchical Reflex

People often think “but what if y is really unknown, so this is only

the prior conditional on u?". This leads to a hierarchical model with

bl %) = p(1) 1211 oo (—%) , (6)

but the MaxEnt interpretation is lost. Can we bring it back?

Answer
Yes, provided we identify the right constraint.
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A Different Type of Constraint

Consider a flat prior w(x) o 1 over a wide domain. This implies a
certain prior for the arithmetic mean T = %Zix,- that is too narrow
and informative (by the central limit theorem). Example with n = 100

dimensions and Uniform(0, 100) prior for each x;:
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Goal

What if we want to control the implied marginal distribution of T,

but otherwise keep the distribution as close as possible to 77
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Simple Example — Three-Valued Function

Starting with m(x), suppose we want to control the marginal
distribution of f(x). For simplicity, assume f(x) can only take values

1,2 or3.
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Simple Example — Three-Valued Function

Starting with m(x), suppose we want to control the marginal
distribution of f(x). For simplicity, assume f(x) can only take values
1, 2, or 3. Under any distribution p(x), the probability that f(x) =1

is

P(F(x) = 1) = / p(x)1 (F(x) = 1) dx (7)
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Simple Example — Three-Valued Function

Starting with m(x), suppose we want to control the marginal
distribution of f(x). For simplicity, assume f(x) can only take values
1, 2, or 3. Under any distribution p(x), the probability that f(x) =1

is

P(F(x) = 1) = / p(x)1 (F(x) = 1) dx (7)
Similarly for 2 and 3 we get
P((x) = 2) = / p(x)1 (F(x) = 2) dx (8)

P(f(x) = 3) = / p(x)1 (F(x) = 3) dx 9)
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Simple Example — Three-Valued Function

Starting with m(x), suppose we want to control the marginal
distribution of f(x). For simplicity, assume f(x) can only take values

1, 2, or 3. Under any distribution p(x), the probability that f(x) =1

P(F(x) = 1) = [ p(x)1(F(x) =1) dx (7)
Similarly for 2 and 3 we get

P(F(x) =2) = [ px)1(F(x) =2) dx (8)

P(F(x) =3) = [ p(01 (F(x) = 3) dx (9)

1021 hese are just three expected values!



Simple Example — Three-Valued Function — Solution

To control the three probabilities (now cast as expected values),

MaxEnt gives the solution

p(x) o< w(x)exp [A11 (f(x) = 1) + Aol (f(x) = 2) + A31 (f(x) = 3)].
(10)

We tweak A1, A2, and A3 to get the desired probabilities.
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Simple Example — Three-Valued Function — Solution

To control the three probabilities (now cast as expected values),

MaxEnt gives the solution
p(x) o< w(x) exp [ML (F(x) = 1) + Aol (f(x) =2) + A1 (f(x) = 3)].
(10)

We tweak A1, A2, and A3 to get the desired probabilities.
Note that the expression inside the exp is just a funny way of
expressing a mapping from f-values to A values (statisticians may

recognise it from regression models involving a factor).
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General Solution

From this example, it seems obvious to me (but | haven't proved it)

that the general solution to this problem is

p(x) oc m(x) exp [g (f(x))], (11)

where the function g() is chosen so that we get the desired marginal

distribution for f(x).
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General Solution

From this example, it seems obvious to me (but | haven't proved it)

that the general solution to this problem is

p(x) oc m(x) exp [g (f(x))], (11)

where the function g() is chosen so that we get the desired marginal
distribution for f(x).
The exp can be absorbed into the function g if we want, giving a

simpler result:

p(x) oc w(x)g (f(x)). (12)
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Exponential Example

Returning to the exponential example with a hierarchical prior, the

joint prior for the hyperparameter and the parameters is
p(u, x) = p(u)p(x | 1) (13)

= p(p)p " exp (—%) (14)
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Exponential Example

Returning to the exponential example with a hierarchical prior, the

joint prior for the hyperparameter and the parameters is

p(u, x) = p(u)p(x | 1) (13)

= p(p)p " exp (—%) (14)

and the marginal prior for x is

p(x) = /0 N p(u)p~ " exp (_Z}ix;) du (15)
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Exponential Example

The marginal prior for x is

p(x) = /0 " b exp (— Z;Xi) dp (16)
o) = [ ptow e (<"1 ) o (17)

which only depends on x through T = %Zl-x,-.
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Exponential Example

The marginal prior for x is

p(x) = /OOO p(p)p~" exp (—ZTX) dp (16)
p(x) :/Ooo p(u)p " exp (—%) dp (17)

which only depends on x through T = %Zl-x,-.This is therefore a

distribution of the form

p(x) x 7(x)g (1 Zx,-) (18)

and is MaxEnt with uniform 7 and a specified marginal distribution

for T=1%"x.
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What is the Implied Prior on T7?

It is difficult to find the g() function for a specified marginal prior,
but if we instead just put In(yu) ~ Uniform(—5 5) for example, we get

_ 100
something almost log-uniform for T = 100 Yoich
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logT' = log =
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Moral

Moral

Using the hierarchical model is equivalent to using MaxEnt with this
specified marginal prior for T = %Zix,-, fixing the problem with the
prior implied by 7.
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Gaussian Example

Suppose 7(x) o 1 over a wide range. This implies inappropriately
narrow priors for Ty =) . x; and To = Zix,? which may be two

quantities of interest.
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Gaussian Example

Suppose 7(x) o 1 over a wide range. This implies inappropriately
narrow priors for Ty =) . x; and To = Z,-x,-z which may be two
quantities of interest.

Using an extension of the previous result, we can constrain the

implied prior for T; and T, and obtain the MaxEnt distribution:
p(x) o< m(x)g (fi(x), f2(x)) (19)

= 7(x)g (Z Xi, Zx,?) : (20)
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Gaussian Example

If these were the usual expectation constraints we would have a
gaussian distribution over x, given a i and a 0. If we let © and o be

unknown (hierarchical) we get this marginal prior for the x quantities:

p(x) = /p(,u, o) H Normal(x; i, 0%) dp do (21)

18/21



Gaussian Example

If these were the usual expectation constraints we would have a
gaussian distribution over x, given a i and a 0. If we let © and o be

unknown (hierarchical) we get this marginal prior for the x quantities:

p(x) = /p(,u, o) H Normal(x; i, 0%) dp do (21)

This depends on x only through the ‘sufficient statistics’ T1 and T>
and is thus MaxEnt, of the form

oo st (7). @2
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The Two Priors
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Moral

Moral
Using the hierarchical model is equivalent to using MaxEnt with this
specified marginal prior for the sum and sum-of-squares of the

x-values, fixing the problem with the prior implied by .
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Conclusions

e At least in some cases, hierarchical models can be thought of as
MaxEnt distributions, incorporating a constraint on the marginal

distribution of some function of the unknowns.
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Conclusions

e At least in some cases, hierarchical models can be thought of as
MaxEnt distributions, incorporating a constraint on the marginal
distribution of some function of the unknowns.

e The MaxEnt solution for this case is simple with the prior

multiplied by a transformed version of the function of interest.
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Conclusions

e At least in some cases, hierarchical models can be thought of as
MaxEnt distributions, incorporating a constraint on the marginal

distribution of some function of the unknowns.

e The MaxEnt solution for this case is simple with the prior

multiplied by a transformed version of the function of interest.

e This argument does not rely on any asymptotics, unlike

exchangability/de Finetti justifications for hierarchical models.
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