
Bayesian Hierarchical Models and the Maximum Entropy

Principle

Brendon J. Brewer

The University of Auckland

1/21



MaxEnt

This is my favourite interpretation of maximum entropy, which I got

from Ariel Caticha.

Starting from a prior distribution π(x), and given a constraint on

probability distributions, the updated distribution is given by

maximising the relative entropy

H(p;π) = −
∑

i

p(x) log
(
p(x)
π(x)

)
(1)

subject to the given constraint and the normalisation condition.
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MaxEnt

If you select the right constraint — that the probability of the ‘data’

proposition should now be 1, this is equivalent to the prior →
posterior update of Bayesian inference, but is more general.

However, the generalisation is hard to use in practice because it is

unclear where constraints that refer to probabilities (Jaynes’ “testable

information” which is actually untestable) would come from.
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Expectation constraints

Consider some function f (x) whose expected value is given

(somehow). The updated distribution is given by the well known

result:

p(x) ∝ π(x) exp [λf (x)] . (2)

The value of λ is selected to ensure that the correct expected value of

f () is obtained.
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Expectation constraints: general version

With more than one expectation specified:

p(x) ∝ π(x) exp

[∑

i

λi fi (x)

]
. (3)

The values of the λs ares selected to ensure that the correct expected

values of fi () are obtained.
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Exponential Example

Consider n positive quantities x1, ..., xn, and an expectation constraint

on the average T :

⟨T ⟩ =
〈
1

n

n∑

i=1

xi

〉
= µ (4)

The MaxEnt result is independent exponential distributions:

p(x) =
n∏

i=1

1

µ
exp

(
−xi
µ

)
. (5)
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Hierarchical Reflex

People often think “but what if µ is really unknown, so this is only

the prior conditional on µ?”. This leads to a hierarchical model with

p(µ, x) = p(µ)
n∏

i=1

1

µ
exp

(
−xi
µ

)
, (6)

but the MaxEnt interpretation is lost. Can we bring it back?

Answer

Yes, provided we identify the right constraint.
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A Different Type of Constraint

Consider a flat prior π(x) ∝ 1 over a wide domain. This implies a

certain prior for the arithmetic mean T = 1
n

∑
i xi that is too narrow

and informative (by the central limit theorem). Example with n = 100

dimensions and Uniform(0, 100) prior for each xi :
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T =
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i xi
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Goal

What if we want to control the implied marginal distribution of T ,

but otherwise keep the distribution as close as possible to π?
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Simple Example — Three-Valued Function

Starting with π(x), suppose we want to control the marginal

distribution of f (x). For simplicity, assume f (x) can only take values

1, 2, or 3.

Under any distribution p(x), the probability that f (x) = 1

is

P(f (x) = 1) =

∫
p(x)1 (f (x) = 1) dx (7)

Similarly for 2 and 3 we get

P(f (x) = 2) =

∫
p(x)1 (f (x) = 2) dx (8)

P(f (x) = 3) =

∫
p(x)1 (f (x) = 3) dx (9)

These are just three expected values!
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Simple Example — Three-Valued Function — Solution

To control the three probabilities (now cast as expected values),

MaxEnt gives the solution

p(x) ∝ π(x) exp [λ11 (f (x) = 1) + λ21 (f (x) = 2) + λ31 (f (x) = 3)] .

(10)

We tweak λ1, λ2, and λ3 to get the desired probabilities.

Note that the expression inside the exp is just a funny way of

expressing a mapping from f -values to λ values (statisticians may

recognise it from regression models involving a factor).
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General Solution

From this example, it seems obvious to me (but I haven’t proved it)

that the general solution to this problem is

p(x) ∝ π(x) exp [g (f (x))] , (11)

where the function g() is chosen so that we get the desired marginal

distribution for f (x).

The exp can be absorbed into the function g if we want, giving a

simpler result:

p(x) ∝ π(x)g (f (x)) . (12)
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Exponential Example

Returning to the exponential example with a hierarchical prior, the

joint prior for the hyperparameter and the parameters is

p(µ, x) = p(µ)p(x |µ) (13)

= p(µ)µ−n exp

(
−
∑

i xi
µ

)
(14)

and the marginal prior for x is

p(x) =
∫ ∞

0
p(µ)µ−n exp

(
−
∑

i xi
µ

)
dµ (15)
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Exponential Example

The marginal prior for x is

p(x) =
∫ ∞

0
p(µ)µ−n exp

(
−
∑

i xi
µ

)
dµ (16)

p(x) =
∫ ∞

0
p(µ)µ−n exp

(
−nT

µ

)
dµ (17)

which only depends on x through T = 1
n

∑
i xi .

This is therefore a

distribution of the form

p(x) ∝ π(x)g

(
1

n

∑

i

xi

)
(18)

and is MaxEnt with uniform π and a specified marginal distribution

for T = 1
n

∑
i xi .
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What is the Implied Prior on T?

It is difficult to find the g() function for a specified marginal prior,

but if we instead just put ln(µ) ∼ Uniform(−5, 5) for example, we get

something almost log-uniform for T = 1
100

∑100
i=1 xi :

−4 −2 0 2 4
log T = log x̄
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Flat π

Hierarchical Model
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Moral

Moral

Using the hierarchical model is equivalent to using MaxEnt with this

specified marginal prior for T = 1
n

∑
i xi , fixing the problem with the

prior implied by π.
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Gaussian Example

Suppose π(x) ∝ 1 over a wide range. This implies inappropriately

narrow priors for T1 =
∑

i xi and T2 =
∑

i x
2
i which may be two

quantities of interest.

Using an extension of the previous result, we can constrain the

implied prior for T1 and T2 and obtain the MaxEnt distribution:

p(x) ∝ π(x)g (f1(x), f2(x)) (19)

= π(x)g

(∑

i

xi ,
∑

i

x2i

)
. (20)
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Gaussian Example

If these were the usual expectation constraints we would have a

gaussian distribution over x , given a µ and a σ. If we let µ and σ be

unknown (hierarchical) we get this marginal prior for the x quantities:

p(x) =
∫

p(µ, σ)
∏

i

Normal(x ;µ, σ2) dµ dσ (21)

This depends on x only through the ‘sufficient statistics’ T1 and T2

and is thus MaxEnt, of the form

p(x) ∝ π(x)g

(∑

i

xi ,
∑

i

x2i

)
. (22)

18/21



Gaussian Example

If these were the usual expectation constraints we would have a

gaussian distribution over x , given a µ and a σ. If we let µ and σ be

unknown (hierarchical) we get this marginal prior for the x quantities:

p(x) =
∫

p(µ, σ)
∏

i

Normal(x ;µ, σ2) dµ dσ (21)

This depends on x only through the ‘sufficient statistics’ T1 and T2

and is thus MaxEnt, of the form

p(x) ∝ π(x)g

(∑

i

xi ,
∑

i

x2i

)
. (22)

18/21



The Two Priors
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Moral

Moral

Using the hierarchical model is equivalent to using MaxEnt with this

specified marginal prior for the sum and sum-of-squares of the

x-values, fixing the problem with the prior implied by π.
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Conclusions

• At least in some cases, hierarchical models can be thought of as

MaxEnt distributions, incorporating a constraint on the marginal

distribution of some function of the unknowns.

• The MaxEnt solution for this case is simple with the prior

multiplied by a transformed version of the function of interest.

• This argument does not rely on any asymptotics, unlike

exchangability/de Finetti justifications for hierarchical models.
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