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Bayesian inference as a belief update
Generative model: 0 ~ w(-), 8 € RP and x ~ p(:|0), x € R™

Bayes Posterior: 0 ~ 7(-|x)
m(-|x) oc w(0) p(x[6).
Belief updatel ¢ maps prior = and data to distribution v(6),
Ww(0; T, x) = v(h).
T he Bayesian belief update

wBayes(Q; m,X) = w(0]x)

IS just one of many.

Can regard the choice of 9 as part of the overall inference, like
the statistical modeling we use to elicit the prior and likelihood.



LLoss and Gibbs posterior
Loss to data: £(0;x) € R. For eg fpayes(8;x) = —109(p(x|0)).

Choose 1 as the BU minimising?t

L) =nEg, [£(0;x)] + DkL(v|[m)
for n > 0 fixed. If v* = argmin, L(v) then

v*(0) x w(0) exp(—nL(0;x)), (GP)

the Gibbs posterior. Bayes takes £ = fgyyes and n = 1.

Example=22; § = (Sq,...,Sk) is a partition of [n] = {1,...,n},

K
0(S;x)= > > (m-— T1)2 (k-means loss)
k:=1iESk

T (S|x) x w(S) exp(—n£(S;x)) is a Gibbs posterior for clustering.

In this example there is no generative model, no p(x|S).



Parameterising the loss
Keep p(x|6), modify BU. True generative model X ~ p*(-). Risk,

R(9) = Dy(p"(X)|Ip(X]0))
based on Bregman-divergence Dy,

Diw'llp) = [ £(o"@))de— [ f(p(@]0))da— | £'(p(2]0)) (0" (@) —p(w]0))da,
Estimate Dy (up to constant) using data

£5(0;x) = nExo(f'(p(X]0))) — n/f(p(a?IG))dw — > f'(p(x;]0))
i=1

If f(z) = xlog(z) —z then £y = lgayes and

mn(0|x) o 7(6) p(x|6)" (power posterior)
If f(z;8) = (=" —1)/B8(8 — 1) then
= S 1L ™ [ oe0)Pde  (Belosdd
(%) = —5 =7 3 p(@l)’ " + 2 [ p(al6)dz  (p-loss>)
7, g(0|x) oc w(0) exp(—nlg(0;x)) (n, B-posterior)

Recover power posterior as  — 1.



Choosing loss hyperparameters I - estimate s = (n, 3).

Don't:
take a prior p(s) and use Bayesian inference

—nlp(0:x
00, 51 o< p(s)r(9) S 7 i() )

c(0,s) needed to normalise “likelihood”, exp(—n#fg) over x.

= ¢(6,s) messes up 6 dependence, doesn't give (n, 8)-posterior.

Consider a block of test data z ~ p*, 2 = (21,...,2m).

Suppose goal is to predict z using posterior predictive

ps(z|x) = /p(z\@) ws(0]x) db.

Risk for prediction is

[(s;%) = E,op[—109(ps(2[x))]
so best s is s* = arg ming[(s*; x).

Plan: work with held-out data and empirical risk.



Choosing loss hyperparameters II - what we do

1) From x hold out J blocks of m calibration samples,
Yrm) = Wy, Yn)) With vy = (Y1 ym+1s - - - Yjm) -
2) Define empirical rick/loss l(s;y(ij),x) for s-estimation,
1(sY(gm)» X) = — Xyj=1 109(ps(y(;)]x)).- (ER/LTT)
3) Update belief for s = (n, 8) using Gibbs posterior

p(sly(gmy: %) o< p(s) TTI=1 ps(y(jy %)

Let §(J’m) = arg minsl(s;y(J’m),a:) minimise empirical risk.

Remarks:

this is just Bayesian inference with a log-likelihood —I(s; y(J’m),X);
here exp(—l(s;y(J,m,x)) is a normalised PDF.
the “true” parameter we want to estimate is s*;

this BU is well specified as §(J’m) — s* as J — oo.



Choosing loss hyperparameters III - properties

Theorem: under regularity conditions, if J = 1 then
. D A
P(8lY(1m)r X) = p(s)ms(Om[x)/c

as m — oo, where 8, = arg maxg p(y(y ,n,)|0) is the MLE.

If m > 1 then as J — oo we have s(;,,y — s* and

V(s = 8(1m)) —2 N(O,H™ 1)
for s ~ p(s|y(jm) x) with H = V2[(s*; z) the Hessian.

Remarks:

the second part is a classical BvM result from an additive log-lkd

first part has convergence to diffuse distribution if no blocking



Example: State Space Model

B BD e DB® 1

Latent process 6§ = (6¢,...,0,) and data x = (z1,...
Block size m = 5 with n = J@)m if there are J(*) blocks.
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SSM risk ratios

7300, p|x) o< (0, p) exp(—nLg(0, ¢;x)) (n, B-posterior)
Fix 8 =1 (gives power posterior). GBI for n:

p(nly;x) o< p(n) I17 =10 (y 5 1)

Compare against Bayes.

R(M¢jm), 1) R(1(1,m)> 1)
' = gy=05 s
= - cPr\/|=1 w |
& . L 7
it o
e i
_ ) _
L P, ({Z5,1:m} /=1 1Y (Jm)» X)
R(Sl’sz) — { }J(Z)N * J(2) '
Jlmij=1"P _p§2({z',lim}j:1|Y(J7m)7X)_




(n, B)-posterior asymptotics at fixed x with m, J¥) — oo
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(n, B)-posterior for ¢3, = 0.7, n on z-axis, 1/ on y-axis. Rows
show posteriors for pooled/J(?J) =1, J=mJW calibration data
(top row) and blocked/J = JW) calibration data (bottom row).
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Fixed training data size, J@) =10 and m =5 throughout.
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Unsupervised sense-clustering of text snippets@!/

“...were sitting on the grass. A small bug landed on the picnic
blanket and crawled...”

‘...warranted further investigation. Federal agents planted a bug
in the suspect’s office to gather intelligence...”

“...released a patch to fix a major bug that was causing the
application to crash...”

“...out I had finally caught the stomach bug that had been going
around the office...”

Snippets Vocab Length True senses Model senses Genres Train, Cal, block Time periods

Target word (N) (V) (L) (K™) (K) (@) (n,lyl, J) (T) detail

bank split 1 704 736 14 2 2 1 500, 204, 34 10 1810—2010
bank split 2 708 717 14 2 2 1 500, 208, 34 10 1810—2010
bank split 3 703 728 14 2 2 1 500, 203, 34 10 1810—2010
bank split 4 704 742 14 2 2 1 500, 204, 34 10 1810—2010
bank split 5 706 735 14 2 2 1 500, 206, 34 10 1810—2010
chair 745 3,180 20 2 2 4 500, 245, 41 10 1820—2020
apple 1,154 3,737 20 2 2 4 800, 354, 59 5 1960—-2020
gay 650 3,071 20 2 4 3 450, 200, 33 5 1920—2020
mouse 584 2,439 20 2 3 3 400, 184, 31 4 1940-2020
bug 522 2,475 20 4 4 3 400, 122, 20 8 1980—2020




EDISC t € {1,...,T}.

Snippets x are data,
sense assignments
Z:(Z]_,...,Zn), ZZE[K]

Dashed nodes are
constant, solid black are
latent variables, solid red
are observed.

n K N N
px|o,)=T[ 3 647 [ du™

T (¢, ¥ | X) o< w(, P)p(x | &, )"
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Sense Top 9 context words n =1
1 say P year computer get new make one company
2 system fix computer update new use device company security
3 insect spray bug find mosquito eat assassin  little beetle
4 p cause bacterium new plant also make people find
Sense Top 9 context words n=71n=0.4
1 p computer new say year company software make get
2 say new federal security agent phone office system P
3 insect bug spray mosquito find beetle say like little
4 p cause make bacterium say virus get people one
Sense Top 9 context words n = 0.2
1 p say new computer get make find year one
2 p say new computer make get year find one
3 p say make new get insect find one use
4 say P bug insect get make spray find like




Conclusions

Generalising Bayesian inference gives another degree of freedom
for “modeling”.

Comes with additional burden of (abstract) statistical modeling
- model the inference - choose |loss and |loss hyperparameters.
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