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Bayesian inference as a belief update

Generative model: θ ∼ π(·), θ ∈ Rp and x ∼ p(·|θ), x ∈ Rn

Bayes Posterior: θ ∼ π(·|x)

π(·|x) ∝ π(θ) p(x|θ).

Belief update1 ψ maps prior π and data to distribution ν(θ),

ψ(θ;π,x) = ν(θ).

The Bayesian belief update

ψBayes(θ;π,x) = π(θ|x)

is just one of many.

Can regard the choice of ψ as part of the overall inference, like

the statistical modeling we use to elicit the prior and likelihood.



Loss and Gibbs posterior

Loss to data: ℓ(θ;x) ∈ R. For eg ℓBayes(θ;x) = − log(p(x|θ)).

Choose ψ as the BU minimising1

L(ν) = η Eθ∼ν [ ℓ(θ;x) ] + DKL(ν ||π)

for η ≥ 0 fixed. If ν∗ = argminν L(ν) then

ν∗(θ) ∝ π(θ) exp(−η ℓ(θ;x)), (GP)

the Gibbs posterior. Bayes takes ℓ = ℓBayes and η = 1.

Example2,5: S = (S1, . . . , SK) is a partition of [n] = {1, . . . , n},

ℓ(S;x) =
K∑
k=1

∑
i∈Sk

(xi − x̄k)
2 (k-means loss)

πη(S|x) ∝ π(S) exp(−η ℓ(S;x)) is a Gibbs posterior for clustering.

In this example there is no generative model, no p(x|S).



Parameterising the loss

Keep p(x|θ), modify BU. True generative model X ∼ p∗(·). Risk,

R(θ) = Df(p
∗(X)||p(X|θ))

based on Bregman-divergence Df ,

Df(p
∗||p) =

∫
f(p∗(x))dx−

∫
f(p(x|θ))dx−

∫
f ′(p(x|θ))(p∗(x)−p(x|θ))dx,

Estimate Df (up to constant) using data

ℓf(θ;x) = nEX|θ(f
′(p(X|θ)))− n

∫
f(p(x|θ))dx−

n∑
i=1

f ′(p(xi|θ))

If f(x) = x log(x)− x then ℓf = ℓBayes and

πη(θ|x) ∝ π(θ) p(x|θ)η (power posterior)

If f(x;β) = (xβ − 1)/β(β − 1) then

ℓβ(θ;x) = −
1

β − 1

n∑
i=1

p(xi|θ)β−1 +
n

β

∫
p(x|θ)βdx (β-loss3,4)

πη,β(θ|x) ∝ π(θ) exp(−η ℓβ(θ;x)) (η, β-posterior)

Recover power posterior as β → 1.



Choosing loss hyperparameters I - estimate s = (η, β).

Don’t:
take a prior ρ(s) and use Bayesian inference

ρ(θ, s|x) ∝ ρ(s)π(θ)
exp(−η ℓβ(θ;x))

c(θ, s)
.

c(θ, s) needed to normalise “likelihood”, exp(−η ℓβ) over x.

⇒ c(θ, s) messes up θ dependence, doesn’t give (η, β)-posterior.

Do:
Consider a block of test data z ∼ p∗, z = (z1, . . . , zm).

Suppose goal is to predict z using posterior predictive

ps(z|x) =
∫
p(z|θ)πs(θ|x) dθ.

Risk for prediction is

l̃(s;x) = Ez∼p∗[− log(ps(z|x))]

so best s is s∗ = argmins l̃(s∗;x).

Plan: work with held-out data and empirical risk.



Choosing loss hyperparameters II - what we do

1) From x hold out J blocks of m calibration samples,

y(J,m) = (y(1), . . . , y(J)) with y(j) = (y(j−1)m+1, . . . , yjm).

2) Define empirical rick/loss l(s; y(J,m),x) for s-estimation,

l(s; y(J,m),x) = −
∑J
j=1 log(ps(y(j)|x)). (ER/LTI)

3) Update belief for s = (η, β) using Gibbs posterior

ρ(s|y(J,m);x) ∝ ρ(s)
∏J
j=1 ps(y(j)|x).

Let ŝ(J,m) = argmins l(s; y(J,m), x) minimise empirical risk.

Remarks:

this is just Bayesian inference with a log-likelihood −l(s; y(J,m),x);

here exp(−l(s; y(J,m),x)) is a normalised PDF.

the “true” parameter we want to estimate is s∗;

this BU is well specified as ŝ(J,m) → s∗ as J → ∞.



Choosing loss hyperparameters III - properties

Theorem: under regularity conditions, if J = 1 then

ρ(s|y(J,m);x)
p→ ρ(s)πs(θ̂m|x)/c

as m→ ∞, where θ̂m = argmaxθ p(y(1,m)|θ) is the MLE.

If m ≥ 1 then as J → ∞ we have ŝ(J,m) → s∗ and

√
J(s− ŝ(J,m))

t.v.−−→ N(0, H−1)

for s ∼ ρ(s|y(J,m);x) with H = ∇2
s l̃(s

∗;x) the Hessian.

Remarks:

the second part is a classical BvM result from an additive log-lkd

first part has convergence to diffuse distribution if no blocking



Example: State Space Model

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 xn

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θn

Latent process θ = (θ1, . . . , θn) and data x = (x1, . . . , xn).

Block size m = 5 with n = J(x)m if there are J(x) blocks.

θA θM

xMxA

φ∗Mφ∗A

True model

θi ∼ N(νθi−1, σ
2), i ∈ 2 : n

xA,i ∼ N(θA,i, (φ
∗
A)

2), i ∈ 1 : pA

xM,i ∼ N(θM,i, (φ
∗
M)2), i ∈ 1 : pM

φ∗A = 1

θA θM

xMxA

φ

Fitted model



SSM risk ratios

πη,β(θ, φ|x) ∝ π(θ, φ) exp(−η ℓβ(θ, φ;x)) (η, β-posterior)

Fix β = 1 (gives power posterior). GBI for η:

ρ(η|y;x) ∝ ρ(η)
∏J
j=1pη(y(j)|x).

Compare against Bayes.

R(η(J,m),1)

opt pm hm

R(η(1,Jm),1)

R(ŝ1, ŝ2) = E
{zj,1:m}J(z)j=1∼p∗

pŝ1({zj,1:m}J(z)j=1|y(J,m),x)

pŝ2({zj,1:m}J(z)j=1|y(J,m),x)

 .



(η, β)-posterior asymptotics at fixed x with m,J(y) → ∞

J = 10 J = 100 J = 1000

J = 10 J = 100 J = 1000

(η, β)-posterior for φ∗M = 0.7; η on x-axis, 1/β on y-axis. Rows
show posteriors for pooled/J(y) = 1, J = mJ(y) calibration data
(top row) and blocked/J = J(y) calibration data (bottom row).
Fixed training data size, J(x) = 10 and m = 5 throughout.



Unsupervised sense-clustering of text snippets6,7

“...were sitting on the grass. A small bug landed on the picnic
blanket and crawled...”
‘...warranted further investigation. Federal agents planted a bug
in the suspect’s office to gather intelligence...”
“...released a patch to fix a major bug that was causing the
application to crash...”
“...out I had finally caught the stomach bug that had been going
around the office...”

Snippets Vocab Length True senses Model senses Genres Train, Cal, block Time periods

Target word (N) (V ) (L) (K∗) (K) (G) (n, |y|, J) (T ) detail

bank split 1 704 736 14 2 2 1 500, 204, 34 10 1810–2010

bank split 2 708 717 14 2 2 1 500, 208, 34 10 1810–2010

bank split 3 703 728 14 2 2 1 500, 203, 34 10 1810–2010

bank split 4 704 742 14 2 2 1 500, 204, 34 10 1810–2010

bank split 5 706 735 14 2 2 1 500, 206, 34 10 1810–2010

chair 745 3,180 20 2 2 4 500, 245, 41 10 1820–2020

apple 1,154 3,737 20 2 2 4 800, 354, 59 5 1960–2020

gay 650 3,071 20 2 4 3 450, 200, 33 5 1920–2020

mouse 584 2,439 20 2 3 3 400, 184, 31 4 1940–2020

bug 522 2,475 20 4 4 3 400, 122, 20 8 1980–2020



 

EDiSC t ∈ {1, . . . , T}.

Snippets x are data,

sense assignments

z = (z1, . . . , zn), zi ∈ [K].

Dashed nodes are

constant, solid black are

latent variables, solid red

are observed.

p(x | ϕ, ψ) =
n∏

d=1

K∑
k=1

ϕ̃
γd,τd
k

∏
w∈xd

ψ̃
k,τd
w

πη(ϕ, ψ | x) ∝ π(ϕ, ψ)p(x | ϕ, ψ)η.



ρ
(η

|y
(J

:m
),
x
)

η

ρ
(η

|y
(J

:m
),
x
)

η

Sense Top 9 context words η = 1

1 say p year computer get new make one company
2 system fix computer update new use device company security
3 insect spray bug find mosquito eat assassin little beetle
4 p cause bacterium new plant also make people find

Sense Top 9 context words η = η̄ = 0.4

1 p computer new say year company software make get
2 say new federal security agent phone office system p
3 insect bug spray mosquito find beetle say like little
4 p cause make bacterium say virus get people one

Sense Top 9 context words η = 0.2

1 p say new computer get make find year one
2 p say new computer make get year find one
3 p say make new get insect find one use
4 say p bug insect get make spray find like



Conclusions

Generalising Bayesian inference gives another degree of freedom

for “modeling”.

Comes with additional burden of (abstract) statistical modeling

- model the inference - choose loss and loss hyperparameters.
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