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Outline

1. Exponential Families of Stochastic Matrices
irreducible Markov chains, s-normalization, maximum entropy principle

2. Lumpings & Embeddings
definition, characterization, operational interpretation

3. Geometry of Lumpability
canonical embedding, foliation of the lumpable family, characterization of e-families
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Exponential Families of Stochastic
Matrices



Irreducible Markov chains

■ Finite space Y . Probability distributions P(Y).
■ E ⊂ Y2 such that the digraph (Y , E) is strongly connected.

■ Functions and positive functions over E : F (Y , E), F+(Y , E).
■ Irreducible row-stochastic matrices over (Y , E): W(Y , E).

Discrete-time, time-homogeneous Markov chain

P (Yt = yt |Y1 = y1, . . . ,Yt−1 = yt−1) = P (Yt = yt |Yt−1 = yt−1)

Pµ (Y1 = y1, . . . ,Yn = yn) = µ(y1)
n−1

∏
t=1

P(yt , yt+1),

(µ, P) ∈ (P(Y),W(Y , E)).

■ Stationary distribution: πP = π.

■ Edge-measure: Q(y, y ′) = π(y)P(y, y ′) = Pπ (Yt = y,Yt+1 = y ′).
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s-normalization

▷ Probability distributions.

u > 0,
u
∥u∥1

▷ Stochastic matrices.

Definition. s-normalization (Miller, 1961).
When (Y , E) is strongly connected we define the mapping

s : F+(Y , E)→W(Y , E)

s(F )(y, y ′) =
F (y, y ′)vF (y ′)

ρF vF (y)
,

with ρF and vF the Perron–Frobenius (PF) root and associated right eigenvector of F .
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Maximum Entropy Principle for Markov chains (Csiszár et al., 1987)

Polytope (m-family) generated by the set of linear constraints {gi = ci},

L =

P ∈ W(Y , E) : ∑
(y,y ′)∈E

Q(y, y ′)gi(y, y
′) = ci , ∀i ∈ [d ]

 ⊂ W(Y , E).

Let P ∈ W(Y , E), and look at projection (information divergence rate D) onto L,

Pe ≜ argmin
P ′∈L

D
(
P ′
∣∣∣∣P) .

Minimizer Pe belongs to an “exponential family”. For λ ∈ Rd ,

P̃λ(y, y
′) = P(y, y ′) exp

 ∑
i∈[d ]

λigi(y, y
′)

 ,

and for ψ(λ) log-PF root of P̃λ, Pe = s(P̃λ⋆
) with

λ⋆ = argmax
λ∈Rd

{λ · c − ψ(λ)} .
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Maximum Entropy Principle for Markov chains (Csiszár et al., 1987)

Entropy rate: H(P) ≜ lim
k→∞

1
k
H(Y1,Y2, . . . ,Yk)

U = s(δE ), maxentropic inW(Y , E), Ue ≜ argminP ′∈L D (P ′||U).

Pe

W(Y , E)
L

P

Ue

U

Ue = argmin
P ′∈L

−H(P ′)−
− log ρ(s(δE ))︷ ︸︸ ︷

E(Y ,Y ′)∼Q ′
[
logU(Y ,Y ′)

] = argmax
P ′∈L

H(P ′).
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Exponential families of stochastic matrices

Exponential family (e-family) of stochastic matrices (Nagaoka, 2005)

Ve =
{
Pθ : θ = (θ1, . . . , θd ) ∈ Rd

}
⊂ W(Y , E),

is e-family with natural parameter θ and dimension d , when there exist a function
K ∈ F (Y , E), d linearly independent functions G1, . . . ,Gd ∈ G(Y , E), and functions
R ∈ RΘ×Y ,ψ ∈ RΘ, such that

log Pθ(y, y
′) = K(y, y ′) +

d

∑
i=1

θiGi(y, y
′) + R(θ, y ′)− R(θ, y)− ψ(θ),

i.e. Pθ = s ◦ exp
(
K +

d

∑
i=1

θiGi

)
,

where G(Y , E) is the quotient space

G(Y , E) ≜ F (Y , E)/N (Y , E),

N (Y , E) ≜
{
N : ∃f , c,N(y, y ′) = f (y ′)− f (y) + c

}
.

Expectation parameter (♣): ηi(θ) = ∑(y,y ′)∈E Qθ(y, y
′)Gi(y, y ′).
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Exponential families of stochastic matrices

Example (Nagaoka, 2005).W(Y , E) forms an e-family of dimension |E | − |Y|.

Example. Parametrization ofW(Y ,Y2) proposed by Ito and Amari (1988).
With Y ∼= [m], pick y⋆ ∈ Y , and write,

log P(y, y ′) =
m

∑
i=1,i ̸=y⋆

log
P(y⋆, i)P(i, y⋆)

P(y⋆, y⋆)P(y⋆, y⋆)
δi(y

′)

+
m

∑
i=1,i ̸=y⋆

m

∑
j=1,j ̸=y⋆

log
P(i, j)P(y⋆, y⋆)
P(y⋆, j)P(i, y⋆)

δi(y)δj(y
′)

+ log P(y, y⋆)− log P(y ′, y⋆) + log P(y⋆, y⋆).

Basis is given by

gi = 1⊺δi , i ∈ [m], i ̸= y⋆

gij = δ⊺i δj , i, j ∈ [m], i, j ̸= y⋆

and the parameters are

θi = log
P(y⋆, i)P(i, y⋆)

P(y⋆, y⋆)P(y⋆, y⋆)
, θij = log

P(i, j)P(y⋆, y⋆)
P(y⋆, j)P(i, y⋆)

.
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Lumpings & Embeddings



Notation & Lumping map

■ Y a finite alphabet.

■ (Y , E) be a strongly connected digraph with vertex set Y and edge set E ⊂ Y2.

■ F (Y , E) ∼= RE , F+(Y , E) ∼= RE+.

■ X another finite alphabet with |X | ≤ |Y|.
■ κ : Y → X surjective map.

■ Y =
⊎
x∈X Sx where for x ∈ X , Sx ≜ κ−1({x}).

Y

X
κ

■ D ≜ κ(E) ≜ {(κ(y), κ(y ′)) : (y, y ′) ∈ E} ⊂ X 2.

■ (Y , E) strongly connected =⇒ (X ,D) strongly connected.

κ maps the graph (Y , E) to the graph (X ,D)
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Lumpability

Stationary Markov chain {Yt}t∈N ∼ P ∈ W(Y , E).

Data-processing:
κ(Y1), κ(Y2), κ(Y3), . . .

■ State space compression (storage, interpretability, . . . ).

■ Process {κ(Yt )}t∈N is not necessarily a Markov chain,

(Burke and Rosenblatt, 1958; Rogers and Pitman, 1981).

■ Whenever Markovian, we say that the MC (or P) is κ-lumpable.

Characterization of κ-lumpability (Kemeny and Snell, 1983).

P ∈ W(Y , E) is κ-lumpable if and only if when for any (x, x ′) ∈ D and any y1, y2 ∈ Sx ,

∑
y ′∈Sx ′

P(y1, y ′) = ∑
y ′∈Sx ′

P(y2, y ′).
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Lumpable family

Lumpable family:Wκ(Y , E)
κ⋆ : Wκ(Y , E)→W(X ,D)

When P is κ-lumpable,
κ⋆P(x, x ′) ≜ P(y,Sx ′ ), y ∈ Sx .

Visual representation upon relabeling (support, blocks and rows).

Y = {0, 1, 2, 3},X = {a, b},Sa = {0},Sb = {1, 2, 3}.

Wκ(Y , E) ∼




κ⋆→


 ,
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Markov embeddings of Markov chains (W. and Watanabe, 2024)

Let κ : Y → X inducing the partition
⊎
x∈X Sx = Y .

Definition. κ-compatible Markov embedding.

Λ⋆ : W(X ,D)→Wκ(Y , E)
where Λ⋆P(y, y ′) = P(κ(y), κ(y ′))Λ(y, y ′), ∀(y, y ′) ∈ E ,

■ Λ ∈ F+(Y , E).
■ ∀y ∈ Y , x ′ ∈ X , (κ(y), x ′) ∈ D =⇒ (Λ(y, y ′))y ′∈Sx ′ ∈ P(Sx ′ ).

Λ =



W1,1 W1,2 · · · W1,|X |

...
...

Wx,1 · · · Wx,x ′ · · · Wx,|X |

...
...

W|X |,1 · · · W|X |,|X |


. Can verify: Λ⋆P ∈ Wκ(Y , E),

κ⋆Λ⋆P = P (right-inverse).
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Example: weather model

Sun Rain
4/5

1/5

1/2
1/2

Sun

Showers

4/5

1/5

1/2

1/2
1/2

1/2

1/2

Thunderstorm

3/5

2/5 2/5

3/5

Λ⋆
↪→
κ⋆
←

P =

 4/5 1/5

1/2 1/2

 , Λ =


1 1/2 1/2

1 3/5 2/5

1 2/5 3/5

 ,

Λ⋆P =


4/5 1/10 1/10

1/2 3/10 1/5

1/2 1/5 3/10

 .
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Geometry of Lumpability



Classification of established families — Markov-centric properties

Manifold m-family e-family Dimension Reference

W(Y , E) ◦ ◦ |E | − |Y| Nagaoka (2005)

Wiid(Y ,Y2) × ◦ |Y| − 1

Wbis(Y ,Y2) ◦ × (|Y| − 1)2 Hayashi and Watanabe (2016)

Wrev(Y , E) ◦ ◦ (|E |+ |ℓ(E)|)/2− 1
W. and Watanabe (2021)

Wsym(Y ,Y2) ◦ × |Y| (|Y| − 1)/2

Wκ(Y , E) ? ? ? W. and Watanabe (2024)
Watanabe and W. (2024)

Observation.

Wκ(Y , E) is generally neither an e-family, nor an m-family.

…but we can decompose the family into simpler structures.
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Linear family of stochastic matrices that lump into prescribed P̄0

Let P̄0 ∈ W(X ,D), and

L(P̄0) ≜ {P ∈ Wκ(Y , E) : κ⋆P = P̄0},

Lemma.
L(P̄0) forms an m-family inW(Y , E), with

dimL(P̄0) = |E | − ∑
(x,x ′)∈D

|Sx |.

W(X ,D)

Wκ(Y , E)
κ⋆

P̄0

L(P̄0)
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Exponential family of embedding at some prescribed origin P⊙

Definition. Canonical embedding.

Let P ∈ Wκ(Y , E). There exists a unique Λ(P)
⋆ : W(X ,D)→Wκ(Y , E) satisfying

P = Λ(P)
⋆ κ⋆P.

Let P⊙ ∈ Wκ(Y , E), and Λ(P⊙)
⋆ canonical embedding.

J (P⊙) ≜
{

Λ(P⊙)
⋆ P̄ : P̄ ∈ W(X ,D)

}
⊂ Wκ(Y , E).

Lemma.
J (P⊙) forms an e-family in
W(Y , E), with

dimJ (P⊙) = |D| − |X |.

W(X ,D)

Wκ(Y , E)κ⋆P⊙

J (P⊙)

P⊙
Λ(P⊙)
⋆

Λ(P⊙)
⋆
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Foliated manifold of lumpable stochastic matrices

L(P̄0) · · · L(P̄l)

J (P0)

J (P1)

J (Pj)

P ′

P ′0

P0 Theorem.
For any fixed P̄0 ∈ W(X ,D),

Wκ(Y , E) =
⊎

P∈L(P̄0)

J (P).

dimWκ(Y , E) = |E | − ∑
(x,x ′)∈D

|Sx |+ |D| − |X | .

Characterization problem.

When doesWκ(Y , E) form an e-family?

single leaf only? conditions on κ and (Y , E)? algorithmic considerations?
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Lumpable cone

▷ To analyze the properties ofWκ(Y , E), we look at the relaxation F+
κ (Y , E).

Fκ(Y , E) ≜ {lumpable functions (not nec. stochastic)} ,

F+
κ (Y , E) ≜ {positive lumpable cone} .

F+
κ (Y , E)

W(Y , E)
Wκ(Y , E)

F

s(F )

[F ]

G : s(G) = s(F )

Commutativity.
s-normalization preserves κ-lumpability
and

F+
κ (Y , E) F+(X ,D)

Wκ(Y , E) W(X ,D).

κ⋆

s s

κ⋆
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Merging blocks

▷ To analyze the properties of F+
κ (Y , E), we will look at the structure of the blocks.

▷ Merging rows in block (x, x ′) ∈ D:

Mx,x ′ ≜
{
y ∈ Sx : ∃y ′1, y ′2 ∈ Sx ′ , y ′1 ̸= y ′2, (y, y

′
1), (y, y

′
2) ∈ E

}
.

▷ Merging blocks:

M ≜
{
(x, x ′) ∈ D : Mx,x ′ ̸= ∅

}
.

▷ Multi-row merging blocks:

M>1 ≜
{
(x, x ′) ∈ M, |Sx | > 1

}
.

Examples.

Wκ (Y , E) ∼





,Wκ (Y , E) ∼




,
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Lumpable cone

Definition.

Gκ(Y , E) ≜
{
log F : F ∈ F+

κ (Y , E)
}

Theorem. Characterization of log-affinity of the cone F+
κ (Y , E).

The two following statements are equivalent.

(i) (Y , E) has no multi-row merging block with respect to κ.

(ii) Gκ(Y , E) is an affine space.

Corollary. No multi-row merging block criterion.
If (Y , E) has no multi-row merging block, thenWκ(Y , E) is e-family.
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Example: Hudson expansion (Kemeny and Snell, 1983)

{Xt}t ∼ P ∈ W(X ,D) {(Xt ,Xt+1)}t ∼?




W(X ,D)

←
κ⋆




H⋆W(X ,D) =Wκ(Y = D, E)

E =
{
(e = (x1, x2), e′ = (x ′1, x

′
2)) ∈ D2 : x2 = x ′1

}
, κ : Y → X , (x1, x2) 7→ x2

No merging row =⇒ Wκ(Y , E) forms an e-family.
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Monotonicity & Lazy cycle criterion

Theorem. Monotonicity.

Let E ⊂ E ′. IfWκ(Y , E ′) forms an e-family, thenWκ(Y , E) forms an e-family.

What happens if there is a multi-row merging block?

Theorem. Lazy cycle criterion.
If for any P ∈ Wκ(Y , E),

P = D+ Π,

κ⋆Π is a permutation matrix over X and D is
diagonal, thenWκ(Y , E) forms an e-family.





■ There can be e-families with multi-row merging blocks.

■ There can be e-families with an arbitrarily large number of multi-row merging
blocks.
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Redundant merging block criterion

Theorem. Redundant merging block criterion.
If (Y , E) has a redundant multi-row merging block, thenWκ(Y , E) is not e-family.

Y = {0, 1, 2, 3, 4, 5} ,X = {a, b, c}, Sa = {0, 1} ,Sb = {2, 3} ,Sc = {4, 5},

Wκ(Y , E) ∼




.

Remove merging block (b, c). Closed path exhausting Y :

1→ 2→ 0→ 4→ 2→ 0→ 3→ 1→ 5→ 3→ 1,

=⇒ Wκ(Y , E) not e-family.
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Dimensional criterion

▷ Recall class:

Gκ(Y , E) ≜
{
log F : F ∈ F+

κ (Y , E)
}
.

▷ Affine hull in F (Y , E):

aff(Gκ(Y , E)) ≜
{

k

∑
i=1

αiGi : k ∈N, α ∈ Rk ,
k

∑
i=1

αi = 1,G1, . . . ,Gk ∈ Gκ(Y , E)
}
.

▷ Recall: aff(Gκ(Y , E)) = Gκ(Y , E) iff no multi-row merging block.

Lemma. Linear space, basis and dimension.

0F (Y ,E) ∈ aff(Gκ(Y , E)).

dim aff(Gκ(Y , E)) = Can compute.

Can construct a basis for aff(Gκ(Y , E)).

24



Dimensional criterion

Theorem. Dimensional criterion.

Wκ(Y , E) forms an e-family if and only if

dim

(
aff (Gκ(Y , E))⊕N (Y , E)

)
= |Y|+ |E |+ |D| − |X | − ∑

(x,x ′)∈D
|Sx |︸ ︷︷ ︸

= dimWκ(Y , E)

.

Algorithm.

■ 1. Construct a basis for aff(Gκ(Y , E)) (skipped in this talk).

■ 2. Construct a basis for N (Y , E) = {N : N(y, y ′) = f (y ′)− f (y) + c}.
■ 3. Concatenate the two bases for aff(Gκ(Y , E)) and N (Y , E).
■ 4. Compute the rank of the system (flatten into vectors of dimension |E |).
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Dimensional criterion — Example

Wκ(Y , E) ∼



 ,

▷ The only multi-row merging block is not redundant.

▷ Basis for aff(Gκ(Y , E)).

1


,



1


,



1


,


1

1

1


,


1

1

1


,


1


,


1


,


1


.
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Dimensional criterion — Example

Wκ(Y , E) ∼



 ,

▷ Basis for N (Y , E)

1 1 1

1 1 1 1

1 1

1 1


,



1

−1 −1 −1


,



1

1

−1


,


1

−1


.

dimWκ(Y , E) = |E |+ |D| − |X | − ∑
(x,x ′)∈D

|Sx | = 11 + 4− 2− 8 = 5

dim (N (Y , E)) = |Y| = 4

dim (aff (Gκ(Y , E))⊕N (Y , E)) comp.
= 10 > 4 + 5.

=⇒ Wκ(Y , E) not e-family.
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Conclusion

Lazy Cycle Criterion

O(|X |2 + |E |)

Find Embedding

No Merging Block Criterion

O(|X | |Y|+ |E |)

Monotonicity

Dimension
Criterion

O(|E |ω)

Witness
Verification

O(|Y|ω)

Corollary=⇒
O(|X | |Y|+ |E |)

Redundant Block
Criterion

O(|D| (|Y|+ |E |))
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Thank you for listening.

arXiv:2412.08400

■ Characterization of Exponential Families of Lumpable Stochastic Matrices
S. Watanabe, G. Wolfer
arXiv:2412.08400
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