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1. Exponential Families of Stochastic Matrices

irreducible Markov chains, s-normalization, maximum entropy principle
2. Lumpings & Embeddings
definition, characterization, operational interpretation

3. Geometry of Lumpability

canonical embedding, foliation of the lumpable family, characterization of e-families




Exponential Families of Stochastic
Matrices



Irreducible Markov chains

@ Finite space ). Probability distributions P()).

@ & C Y? such that the digraph (), £) is strongly connected.

@ Functions and positive functions over &: F.€), FH Y, €E).
¢ Irreducible row-stochastic matrices over (), £): W, E).

Discrete-time, time-homogeneous Markov chain

P(Ye=w|Yi=y1,....Yeic1 = yi—1) =P (Vs = ye|Yeie1 = yi—1)
Pu(Yi=y1,.... Yo = yn) = ply1 H Yt Y1),
t=1

(. P) € (P(V), WV, €)).

¢ Stationary distribution: 7P = 7.

@ Edge-measure: Q(y,y') = (y)P(y,y') =Pz (Vi =y, Yex1 = y).



s-normalization

> Probability distributions.

u>0,

[ully

> Stochastic matrices.

Definition. s-normalization (Miller, 1961).

When (), €) is strongly connected we define the mapping
s: FY(V, &) - WD, €)

Fy, y')ve(y')
Prve(y)
with o and vr the Perron—Frobenius (PF) root and associated right eigenvector of F.

s(F)(y.y') =



Maximum Entropy Principle for Markov chains (Csiszar et al., 1987)

Polytope (m-family) generated by the set of linear constraints {g; = ¢;},

(yy)e€

- {Pe W6 Yy alyy) =avic [d]} CWD.).

Let P € W(y, &), and look at projection (information divergence rate D) onto L,

P. = argmin D (P'||P).
Pel

Minimizer P, belongs to an “exponential family”. For A € R,
Prly.y)=Ply.y)exp | ¥ Meily.y) |,
i€[d]
and for (A) log-PF root of Py, P, = 5(P,,) with

A" =argmax{A-c—9P(A)}.
AeR?



Maximum Entropy Principle for Markov chains (Csiszar et al., 1987)

1
Entropy rate: H(P) £ lim ZH(YL Yo, ooy Ye)

k—o0

U = s(6¢), maxentropic in W(Y, ), Ue & argminp s D (P'||U).

—logp(s(d¢))

Ue = argmin § —H(P') = E(y,y/)oq [log U(Y, Y")] p = argmax H(P').
PeL ' PeL



Exponential families of stochastic matrices

Exponential family (e-family) of stochastic matrices (Nagaoka, 2005)
W, = {pgz 9=(6,....00) ¢ JRd} CWQ.E),

is e-family with natural parameter 8 and dimension d, when there exist a function

K € F(Y, &), d linearly independent functions Gy, . .., Gy € G(V, ), and functions
R € RO*Y, P e R®, such that

d
log Py(y.y') = K(y,y') + Y 0'Gi(y,y') + R(6,y") — R(6, y) — 9(6),

i=1

d
ie. Py = so0exp <K+ EG’G;) ,

=1

where G(), £) is the quotient space
G.E)EF(V.E)/N.E),
NY.E) & {N: e Ny.y) =f(y) = fly) + C}-

Expectation parameter (&): 77;(6) = L, ,/)ce Qo(y, v Gi(y,y').



Exponential families of stochastic matrices

Example (Nagaoka, 2005). W(), £) forms an e-family of dimension |E| — ||.

Example. Parametrization of YW (), %) proposed by Ito and Amari (1988).
With Y 22 [m], pick yx € ), and write,

o nN_ v ° P(ys, i)P(i, y) .
log Ply.v) _,:1;7&},*' g Py« y)P (Y*v)’*)(s’(y)

UL Ul P(i, j)P(ys: Yx
PRI o Al
+log P(y, yx) — log P(y", yx) + log Py, y)-
Basis is given by
g =174, i€[m]i# yx
g =016, i€ [mij#y
and the parameters are

i tog P P ys) i — tog DU ) POy y)
O = e Py O T B B PGy



Lumpings & Embeddings



Notation & Lumping map

¢ Y afinite alphabet.
* (y, &) be a strongly connected digraph with vertex set ) and edge set £ C V2,
* F(Y,E)=RE, FHY,E) = RE.

# X another finite alphabet with |X| < |Y].
¢ x: Y — X surjective map.
® YV = W,cx Sx where for x € X, Sy = k' ({x}).
YLLTTT T TTTT]
VK
x| [ [ [ ]

* DEx(€) 2 {(x(y).x(y): (y.y) €E} C A%
* (Y, &) strongly connected => (X, D) strongly connected.

k maps the graph (), £) to the graph (X, D)



Lumpability

Stationary Markov chain {Y;}ieny ~ P € W(D, E).

Data-processing:
K(Y]),K(Yz),K(Y:;), e

@ State space compression (storage, interpretability, ...).
@ Process {k(Y¢) }+eN is not necessarily a Markov chain,
(Burke and Rosenblatt, 1958; Rogers and Pitman, 1981).

¢ Whenever Markovian, we say that the MC (or P) is x-lumpable.

Characterization of x-lumpability (Kemeny and Snell, 1983).

P e W(), E) is k-lumpable if and only if when for any (x, x') € D and any y1, y» € S,

Y. Pny) =Y Plyay).

y'eSy y'eSy




Lumpable family

Lumpable family: Wy(), &)
Kt We(V,E) = W(X, D)

When P is x-lumpable,
1 P(x,x") £ Py, Sy),y € Sx.

Visual representation upon relabeling (support, blocks and rows).

Y=1{0,1,23},X ={ab},Sa={0},S,={1,2,3}.

& 8 s & | (e s
Wx(y,g)'\' Q E ’ i S oo - ,
- !



Markov embeddings of Markov chains (W. and Watanabe, 2024)

Let x: Y — & inducing the partition ¥,y Sx = ).

Definition. k-compatible Markov embedding.

At W(X, D) = Wi(V, E)
where AP(y,y') = P(k(y),x(y")) Ay, y'). Y(y,y') € €,
* Aec FH(Y,E).
e VyeY X eX (x(y).x) €D = (Aly.y'))yes, € P(Sw).

Wi 3 Wi 3 3 3 Wi x|
A= ”7\{/;1’"3 ””” 37 7‘)1,;;;’3"",";7"\)1/:‘2;[” ) Can verify: AyP € Wi (), E),
”””” CoT ’:””"T’””i"”””” K« Ay P = P (right-inverse).
Wxia : : P Wi




Example: weather model

Showers
1/2

Thunderstorm

111/2 1/2
4/5 1/5 el
P= ( ) A=| 113/5 2/5

AP = 1/213/10 1/5
1/2§ 1/5  3/10



Geometry of Lumpability



Classification of established families — Markov-centric properties

Manifold m-family | e-family Dimension Reference
W, €) O O I Nagaoka (2005)
Wia.3?) | X © NS
Wbis (y, yz) O X (|y| — 1)2 Hayashi and Watanabe (2016)
Weer (Y, E) O O ([E] +1(E)]) /2 -1
W. and Watanabe (2021)
Wsym(yvyz) O X ‘y|(|y|71)/2
W. and Watanabe (2024)
WK(y’ 5) ? ? ? Watanabe and W. (2024)

Wi (Y, ) is generally neither an e-family, nor an m-family.

...but we can decompose the family into simpler structures.



Linear family of stochastic matrices that lump into prescribed P

Let Py € W(X, D), and
L(P) £{PEW(V,E): kP = Py},

Lemma.
L(Py) forms an m-family in W(Y, £), with

dimL(P) = €)= ¥ ISk

W(X, D)

Wi(Y, €)
=



Exponential family of embedding at some prescribed origin Py

Definition. Canonical embedding.

Let P € Wi (Y, E). There exists a unique A,((P): W(X,D) = Wi (Y, E) satisfying

p=APx.p.

Let Po € Wi (Y, E), and AS{%) canonical embedding.

T(Po) 2 {A&”ﬂp Pe W(X,D)} CWe(D,6).

W(X, D)

J (Ps) forms an e-family in
WY, E), with

dim J (Ps) = |D| — | X




Foliated manifold of lumpable stochastic matrices

7

For any fixed P, € W(X, D),

Wx(yvg): E‘J j(P)

PeL(Py)

dmWi(V. €)= €|— Y [S+ID|—|X].
(x,x")eD

Characterization problem.

When does W, (), £) form an e-family?

single leaf only? conditions on x and (), £)? algorithmic considerations?



Lumpable cone

> To analyze the properties of W, (), £), we look at the relaxation F,7 (Y, £).

Fe(Y, E) £ {lumpable functions (not nec. stochastic)},
FH (Y, &) £ {positive lumpable cone} .

Commutativity.

s-normalization preserves x-lumpability
and

Fr (. &) =5 Fr(x,D)

| E

WiV, E) —= W(X, D).




Merging blocks

> To analyze the properties of F, (), £), we will look at the structure of the blocks.

> Merging rows in block (x, x') € D:
My £y €S Vs €Suyi #v5 (yon). (v y5) €€}
> Merging blocks:

ME{(x,X) eD: My #D}.

> Multi-row merging blocks:

Msq =2 {(x,x) € M,|S| >1}.

Examples. / @ I I 3
° E o o 3 3
77777777 3”””"5"0""0"5”””” ° 1 o o
We,E) ~ | == m oo e AL moe~| S0
! 1 o ' [ ] [ ] [ ] ¢ [ ]
i i ° E e o ° E °
e e o o
e ol



Lumpable cone

Definition.

Ge(V, €) £ {IogF: F e ]:,?'(y,é')}

Theorem. Characterization of log-affinity of the cone 7,/ (), £).

The two following statements are equivalent.

(i) (Y, &) has no multi-row merging block with respect to x.

(i) Gx(Y, €) is an affine space.

Corollary. No multi-row merging block criterion.

If (¥, €) has no multi-row merging block, then Wi (), £) is e-family.

20



Example: Hudson expansion (Kemeny and Snell, 1983)

X}t ~PEWX, D) {(Xe, Xe1)}, ~?

° e ®
° )

o 0oio: | )\ | e o | ‘e
”””””” e e S e
e s =

o e e
e o | o
wx,p) | o T

o | .

H*W(X,‘D) - WK(y - b,g)
E={le=(xnx)d=0(x) €D x=x} : V=X (x.0)—x

No merging row = Wy (), £) forms an e-family.

21



Monotonicity & Lazy cycle criterion

Theorem. Monotonicity.

Let £ C & If Wi (Y, E’) forms an e-family, then Wi (), £) forms an e-family.

What happens if there is a multi-row merging block?

Theorem. Lazy cycle criterion.

If forany P € We(,E),  |eeeoolod

| e o
P=D+II, | I N
X ) Lo e
k«I1is a permutation matrix over X and Dis | ________ . A .
diagonal, then Wi (Y, &) forms an e-family. * °. ‘ ‘
e o | |

¢ There can be e-families with multi-row merging blocks.

@ There can be e-families with an arbitrarily large number of multi-row merging
blocks.



Redundant merging block criterion

Theorem. Redundant merging block criterion.

If (W, €) has a redundant multi-row merging block, then Wi (Y, £) is not e-family.

Y=1{0,1,2,34,5},X={ab,c},Sa={0,1},5,={2,3},S. = {4,5},

° o o °
° o o °
e o ‘e ®
Wel.8) ~ o o o o
ooo _______ o _______
o o ° °

Remove merging block (b, ¢). Closed path exhausting ):

1522502425223 0—-3—231—25—23—1,

= Wi(Y, €) not e-family.



Dimensional criterion

> Recall class: I / ’%_‘\

Ge(V,E) 2 {logF: FE FF (V. €)}. // e

> Affine hull in F (), £):
k

i=1 =1

k
aff(g,((y,é'))é{ OL,'G,‘ZI(EN,DCEIRI(,ER,‘IT,G1 ..... ergK(y,é’)}.

> Recall: afF(QK (y, 5)) = gK(y, 5) iff no multi-row merging block.

Lemma. Linear space, basis and dimension.
0]:();’5) S aff(gK ()}, 8))
dim aff (G, (), £)) = Can compute.
Can construct a basis for aff (G (Y, £)).




Dimensional criterion

Theorem. Dimensional criterion.

Wi (Y, €) forms an e-family if and only if

dim<aff(gx(y,8))®f\/'(3),5)>=|y|+|5|+|D|_|X|_ Y IS

(x,x")eD

=dim W, (Y, €)

Algorithm.

@ 1. Construct a basis for aff (G (Y, £)) (skipped in this talk).
@ 2. Construct a basis for N'(V, &) = {N: N(y,y') = f(y') — f(y) + c}.
# 3. Concatenate the two bases for aff (G« (), £)) and N (), £).

# 4. Compute the rank of the system (flatten into vectors of dimension |E|).




&
o
=
<
X

it
_
=

2
e
)

5=
e
(S

©
=

2
(2]
=
v

E

a

> The only multi-row merging block is not redundant.
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Dimensional criterion — Example

> Basis for N'(), &)
1 i 1 1
R
1 1
1 1
dimWi (), €) =

o o o
o e o o
WK(y,5)~ 1
o °
° °
—717717 7777—177—1 77777 i 777777 P I i 7777777777 177
| - |
: 1
E|+|D|—|X|— Y, [S|=11+4-2-8=5
xx’)ED
dim (M(Y.€)) = |Y| =4
dim (aff (G (Y, E)) BN (D, £)) “= 10 > 4+ 5.

= Wi(Y, €) not e-family.

27



Conclusion

Find Embedding . .
Dimension = Corollary
Criterion (BN ESEA)
Lazy Cycle Criterion (’)(|5\“’)
(X[ + [€]) |
W.|t.nes.s Redundant Block
No Merging Block Criterion Verification Criterion
o(1X] 1Y+ €] oY1) o(ID1 (1IY1 + 1£1))

Monotonicity

28



Thank you for listening. E - E

arXiv:2412.08400

¢ Characterization of Exponential Families of Lumpable Stochastic Matrices
S. Watanabe, G. Wolfer
arXiv:2412.08400
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