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coordinates

v\
We wish to evaluate Z = / f(x)du(x)
a N

function > 0 measure > (

e.g. Mass = / Density dVolume , Evidence = / Likelihood dPrior

In statistical physics, Partition function = Z exp(—energy)

states

Use coordinates in which x represents the measure, du(x) = dx, and normalise to [ dx = 1.

Z=/1f(X)dX ~ 3 f(x) bx Z=/01f(X)dX

Raster™ cells by decreasing value of f.

f

— [T T T T
0 < X < 1
volume x +— linear X

*Impractical but that will not matter!




We need to use numerical evaluations f; = f(x;), 1 =1,2,3,...,n

How to choose locations x;? Random! (How else?)

Random in volume x = Random on linear X.

Assignment — the key operation

Given one sample, value f*, from x* somewhere in volume X,
what is [ fdX 7

Assign f(elsewhere) = f* (the MaxEnt assignment, what else?)
giving [ fdX = f*X.

Feign deeper ignorance if you want, but you will then be stuck.

“Monte Carlo”

Assign

LR
X*

Now take n = 2 random locations, get values f; and fs,

labelled as f1 < fs so that 0 < Xo < X7 < 1.

Assign contribution from f; (independent of X7) as f;.

The excess fo— fi1 is positive from random location Xo within X7, fo—f1

so assign contribution from fo—f1 as (f2 — f1)X;. >

0

Ja
With n = 4, make 4 assignments on 0 < X4 < X3 < Xo < X7 < 1. fa

Z=fi+(fa— f1) X1+ (fs = f2) Xo+ (fa— f3) X3 fo

fi

0
0 Xy

And so on.




With n = 4 samples, we seek X ~ Uniform(0 < X4y < X3 < X5 < X1 <1).

Avoid sorting by recursing inward compression factors ~. Ja

v = @Y* (outermost of 4 ) £ l
fo

X3 = 717273, v3 = @Y? (outermost of 2

)

v =@"Y? (outermost of 3) l
V(4
) 0

X4 = 71727374 Y4 = @ (outermost of 1 S )u(}
@ = Uniform(0,1) ~

statistical

Infer statistical estimate Pr(Z | fi, fo, f3, f4) = Inference(Z).

~"

data

Inference(Z) A

Example: fi1 =1, fo =2, fs=3, fs =4. 7 = 2.80+ 0.48

<Z> B fl T f2 s f3 1+ 2f4 mean =+ stddev
— = i

This is asymmetric:

Why?
— because the f’s are bounded below by 0 but not abowve.
There is no up/down symmetry to force a symmetric distribution, so f4 is anomalous.

Conversely, f1, fo, f3 are equivalent because they are bounded below and above.

Our assignments are logically defensible. Which would you change?




( Using several runs] Different sampling of f and different simulation of X.

A

f3
f3
f2 l f2i
fl fl
0

| | | > 0 ,
0 X3 X2 X1 1 0 XB

Ordering becomes conflicted between separate runs.
/A

Wrong way round!

0

0
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0

0
There is only one special “top” f value, not several.
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Monte Carlo
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The problem with
Monte Carlo

IOLI9)SO]

The solution is

+ Nested Sampling
Prior

Lt“%ﬁ—&.—.—.—- X
>

0T
0 < tiny 1 log X
volume

Keep the ensemble populated by resampling x in f(x) > f*.
_ \
X1=m, Pr(y) =ny""', v=@"" (outermost of n)

X2 =772, @ = Uniform(0, 1)

X — )
3= 1273 Geometrical compression, k steps reach X ~ e™

New location e
Old location o
Transferred o

O e®
X=wX"
n = 3 pictured




(The basic example)

10 =1

1 for X <e
0 otherwise

} with tiny downward slope to make f \,.

(

Z=e*
—log Z =

)




(The basic example)

1 for X <e
0 otherwise

f(X) = } with tiny downward slope to make f \..

Z =eF
=—logZ =pu

D ... 2 1
o —e |0
-3 -2 =1 0
— U log X

Run with n = 1.
Get dataset {0,0,...,0,1,1,1,1,...}.

J

TV TV
D zeros all 1’s

Compressions are vy ~ Uniform(0, 1), so logy ~ —Exponential(1)
so Frequency(D | u) = e *ul /D! [Poisson)] D =p=+ /1]

Given D, inference of ( = —log Z where Z = f1 4+ (fo—f1) X1+ (fs—f2)Xo+ - = Xp =172 ... 7D
is Inference(C | D) =e ¢P~1/(D-1)! [Gamma] [(=D++/D]

Expectation recovery of pis (Pr(¢ | p)) = Z Inference(( | D)Frequency(D | pu) [ =pu=+/2u]
D=0




(A second example)

) =1-X

Run with different ensemble sizes n.

Expectation recoveries of Z over many runs:

A<P1‘(Z)>forn:1 A< Pr(Z)) for n =2 A< Pr(Z) ) for n =10

A
>

0?5 1 . 0 0!5 { .
(Z) = 0.6667 + 0.2357 6+0. (Z) = 0.5239 & 0.1064 (Z)=05

Do not average coarse runs merge them or (more robustly) run a large ensemble directly.

You only ever have one dataset!




(Programming)

c = number in core, f > f*
s = number in shell, f = f*

Nested Sampling uses n locations in f(x) > f* {

Force up in f by removing shells while keeping the ensemble populated.

core shell
_ A\
~
[ ] [ ] S 6 6 e Q O Q O O Q_ 0O
|

current ensemble output trajectory

— X" —

You supply procedure to get x’ = Explore(x) randomly in f(x’) > f*.
You write this.

Begin with n random x’s with their values f(x), and set f* = 0.

Iterate:

Divide ensemble into core ¢ and shell s.

You control this >While you want more members (usually because c is smaller than you want) ...

Take any x in f(x) > f* (suggest random choice from current ensemble).
Get new x’ = Explore(x) and its f(x’).
|_Add x’ to ensemble and increment either ¢ (if f* > f*) or s (if f' = f*).

shell remains populated (it may have several members if f has a plateau) ...

Transfer shell members to the output “trajectory” and decrement s.

Monitor progress (next slide).

Compress by increasing f* to the next lowest f.

End: empty the ensemble by iterating without generating new members.




Z
Terminate when Z stops increasing, or (better?) when H saturates as learning stops.

Get Quantity Z = / fdX and Information H = / é log i dX

Progress updates Begin -+ - Iterate --- End
Xo=1 |X;=@"™X,;_, X =0

Zo =20 Zi=2Zi1+ Xi—1(fi — fiz1) Y. Xof=2
Zy =0 AZQZZ£—1+(X¢—1—X7;)fi\ > f0X~Z
4

Ja fa
l ° ~ fo=[34 l
f1 Area 7 l f1 Area 7' )
0 T

X
>

0

| T T |
0 X4 X3 Xo Xi 0 Xy X3 Xo Xy

Z decomposes by value. 7' decomposes by volume.
Use for termination. Use for applications.

The compression factors actually were @1/ " for unknown @), which we
simulate with v samples from Uniform(0, 1) of what @) might have been.
These v simulated trajectories yield the range of plausible results.

Each record on the trajectory has:
( x = location
f = value f(x)
n = ensemble size of which x was the outermost
@ - .- @, = simulated compression controllers from Uniform(0, 1)
@), = central geometric-mean 1/e for central trajectory,
used to terminate when Z or (better H) saturates.




( Control )

New member is x’ = Explore(x) uniform in f(x") > f*. )/\7

new members to grow ensemble;
Upon removing a shell (occupancy s, usually 1), insert new members to preserve membership n;
/, new members to erode ensemble.

You control this

—® Insert new member within f *\

: Transfer shell member
® (lowest f) to trajectory

é
< Iterate <+




Posterior
mass

(Uncertainty )

The posterior occupies a volume X ~ e~ (definition of information).
With ensemble size n, this is reached in about nH + vnH steps (Poisson).

The uncertainty yields é(log X) ~ +/H/n, hence d(log Z) ~ \/H/n also.
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1/n

—

( COl’lVGI‘geIlce ) uncertainty

Integral / f(X)dX is defined as  lim Z f(X

60X —0
in any way

“In any way” inclu§es geometrical compression with large n and, with probability 1,
statistical generatioy and recovery of such compression (which is nested sampling).

<z \
< 7
+ ) ) () ()

end:e_l‘j’ 510gXN1/n

Missing terminatidn proportion is bounded by the (always limited) information content H* from f.

AZ 1N [Fend H* . . e
— =7 f(X)dX < ; which — 0 as p increases with iteration count.
0

lim (inferred Z) = true Z QED \/

large ensemble
large compression




( Reﬁnement)

Trajectory gives posterior distribution Pr(x) as a weighted sum Y P; §(x — x;) over locations.
Hence estimate distribution Pr ( [ ¢(x)dx) = Y P;¢(x;) of arbitrary quantity.

To get numerical uncertainty in this, use the v simulations of what the compressions actually were.

To improve numerical accuracy, get finer sampling of range of interest by sourcing another ensemble.
A

>
log X

Aim to add enough refinement to get roughly uniform decomposition fdX of the posterior mass.

1 o_Discovery

354545
® © o

@ @oc @ o)
3 4 555 4 3 1 Merged

3 Refinement

Add the n’s in each merged interval, with intervals compressing by about exp(—1/n).




(Multimodality) I define a separate mode as an island of locations which
your exploration technique (confined by the value constraint)
is (at least in practice) unable to communicate with.

log X
You suspect that this location is in a separate mode.

Source an ensemble from there to explore the supposedly isolated island.

Get the island’s evidence, as compared with the full system, and its posterior distribution.




Applications Quantification Statistics Statistical physics

fi Density Likelihood Boltzmann factor
0X; d volume 0 Prior number microstates

w; = fi 0X; J mass d Joint Boltzmann factors
Z=> fidX; Mass Evidence Partition function
P, =w;/Z ) proportion 0 Posterior ) probability

H =) PlogPh; Information Kullback-Leibler —Entropy

The same trajectory is obtained for any monotonic function of f, in particular f7.

So Z generalises to Z(5) = > _ ff 0.X; at no cost, smoothly because the § X’s are fixed.

In statistical physics, f? = e #¥ where E = energy (= —logLikelihood) and 8 = 1/kT = coolness.

O0log Z oU
952 and specific heat C' = — as smooth functions.

ap op

A A

B large
cold

We can plot Z(8) and also internal energy U = —

@

superheat¢d ™o,

log X
And we can deal with phase changes, where U has
a discontinuity (latent heat) and C goes singular.

(Annealing fails.)




ﬂhat’s it! That’s how to add up! x

I am a craftsman — I make tools, and nested sampling is my finest.
Good workmen know their tools.

Enjoy!

K John Skilling, Auckland, December 2025 J




