

Our Symmetries

Arithmetic, Probability, Quantum

John Skilling [\(john@skilling.co.uk\)](mailto:john@skilling.co.uk)

MaxEnt2025 Auckland

Start with arithmetic

Mathematicians say “*Peano axioms*” !

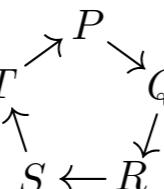
1: $\exists 0$ (✓)

2: \exists successor $S(\cdot) : \forall n, \exists S(n)$. Think $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \dots$ (✓)

3: But what about $\rightarrow \bullet \rightarrow m \rightarrow \bullet \rightarrow \bullet \rightarrow \dots$?

$\rightarrow \bullet \rightarrow n$ Need to say S is invertable, \exists unique \leftarrow . (A fixup)

4: And what about $\rightarrow \bullet \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow \dots$? Need to say $\nexists \bullet \rightarrow 0$. (A fixup)

5: What about  along with $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \dots$?

Need axiom of induction to exclude disjoint cycles. (A fixup)

Fixups are a disgrace.

Mathematicians then say “*Zermelo-Fraenkel — welcome to ∞ and the Axiom of Choice*” !

Not for me.

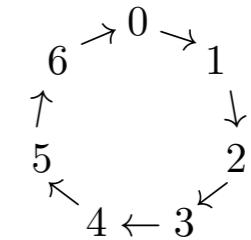
Arithmetic from symmetries

1: **We are finite.** Modelling encodes objects from a finite library (size N) of symbols.

2: Demand **lossless communication** (permutations of library).

Fundamental permutation is cyclic with prime length (no subcycles).

Arbitrarily assign labels $\underbrace{\{0, 1, 2, \dots, N-1\}}_{\text{Library}}$ with N prime.



We have Peano #1: $\exists 0$ (\checkmark)

#2: \exists successor $S(n)$, $n = \underbrace{S(S(\dots S(0)\dots))}_n$ (\checkmark)

#3: S invertable (\checkmark)

#4: **False:** $S(N-1) = 0$

#5: Induction (\checkmark)

Begin wraparound arithmetic.

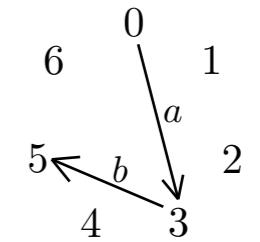
3: *Associativity*

We want to assemble composite objects $A \oplus B$, $P \oplus Q \oplus R$, etc, ignoring irrelevant differences.
 Demand that representation is associative: $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

Lossless associativity \iff Additive representation $a \oplus b = a + b \pmod{N}$
--

Commutativity is emergent.

Subtraction is the inverse. $2 - 5 = 1000000 \pmod{1000003}$.

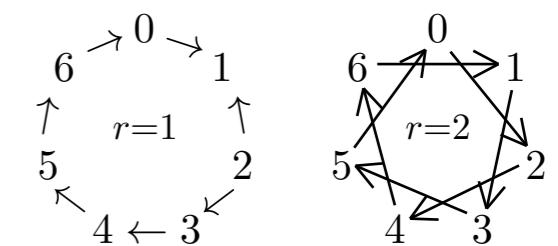


4: *Distributivity*

We want to be able to communicate additivity by transformations.

Demand that transformations are left-distributive, $T(a + b) = T(a) + T(b)$.

This gives multiplication, $T(x) = rx \pmod{N}$, with $r \neq 0$.



Left-distributivity over addition \iff Linear multiplication $a \otimes b = ab \pmod{N}$

Right-distributivity and associativity are emergent.

Division is the inverse. $1 \div 3 = 666669 \pmod{1000003}$.

5: *No overflow*

Demand size of application $< N$ and avoid detailing N .

To implement subtraction fully, invent negative numbers: $2 - 5 = -3$.

To implement division fully, invent rational numbers: $1 \div 3 = \frac{1}{3}$.

Continuity and order ($<$, $=$, $>$) are emergent.

Now have real line: proceed to standard mathematics, π , \exp , \log , \cos , \sin , etc.

Summary

Set the scene.

1: We are finite \implies Library $N < \infty$

2: Lossless communication \implies Cyclic permutations

Basic symmetries.

3: Lossless associativity \iff Additive representation
 $a \oplus b = a + b \pmod{N}$

4: Left-distributivity over addition \iff Linear multiplication
 $a \otimes b = ab \pmod{N}$

Get useful language.

5: Size of application $< N \implies$ standard mathematics

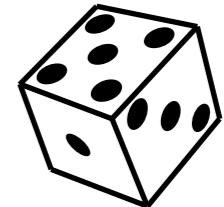
No fixups.

Application — Probability

Set the scene.

Inference is about focussing on posterior subsets $X \in Z$ of prior possibilities Z .

$$\{1, 3, 5\} \in \{1, 2, 3, 4, 5, 6\}$$



Quantify by $\Pr(X | Z)$ called *probability*.

Basic symmetries.

\Pr is additive over X because disjoint subsets combine associatively.

\Pr scales multiplicatively over Z because additivity is preserved over expansion (distributivity).

$$\therefore \Pr(X | Z) = \underset{\text{measure}}{\overset{\curvearrowleft}{m(X)}} \underset{\text{function}}{\overset{\curvearrowleft}{f(Z)}}$$

Get useful language.

Consistency during expansion of context $X \in Y \in Z$ requires $f = 1/m$.

$$\therefore \Pr(X | Z) = \frac{m(X)}{m(Z)} \quad (\text{simple proportion})$$

Hence sum and product rules of Bayesian probability.

No tedious philosophy (propensity, frequency, belief, plausibility, . . .).

If you have the basic symmetries of arithmetic, then you *have* arithmetic.

Which assumption could a skeptic deny?

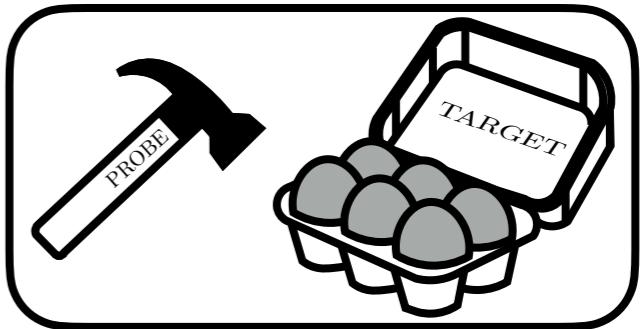
Application — Physics

Set the scene.

Physics is about *interactions*, probe $\sim\sim$ target.

At smallest scale, cannot have full knowledge.

Modelling needs quantity and uncertainty.



Representation of object is based on number pairs.

$x = (x_1, x_2), y = (y_1, y_2), \dots$

Basic symmetries.

Demand lossless associativity $x \oplus (y \oplus z) = (x \oplus y) \oplus z$ of assembly.

\therefore Representations add linearly, $(x \oplus y)_i = x_i + y_i$.

Demand that probing is left-distributive, $x \otimes (y + z) = x \otimes y + x \otimes z$, to preserve additivity of targets.

“Probe” and “target” are interchangeable labels, so demand right-distributivity too.

\therefore Interaction is bilinear multiplication, $(x \otimes y)_i = \sum_{jk} \varphi_{ijk} x_j y_k$ with 8 coefficients φ to be defined.

So we have lossless associativity (linear addition)

and left and right distributivity (bilinear multiplication).

Also demand that operations chain associatively.

$x \otimes (y \otimes z) = (x \otimes y) \otimes z$

Get useful language.

The three product rules

We have bilinear multiplication $(x \otimes y)_i = \sum_{jk} \varphi_{ijk} x_j y_k$ with φ to be defined,

with associativity $x \otimes (y \otimes z) = (x \otimes y) \otimes z$

Associativity imposes 16 quadratic constraints on the 8 φ 's.

$$\sum_{t=1}^2 \varphi_{ixt} \varphi_{tyz} = \sum_{t=1}^2 \varphi_{itz} \varphi_{txy} \quad \forall i, x, y, z \in \{1, 2\}$$

They allow three product rules

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \otimes \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \left(\begin{array}{c} \underbrace{\begin{pmatrix} x_1y_1 - x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix}}_A \text{ or } \underbrace{\begin{pmatrix} x_1y_1 + x_2y_2 \\ x_1y_2 + x_2y_1 \end{pmatrix}}_B \text{ or } \underbrace{\begin{pmatrix} x_1y_1 \\ x_1y_2 + x_2y_1 \end{pmatrix}}_C \end{array} \right) \quad [\text{algebra!}]$$

Extract operator x :

Use polar coordinates.

Complex numbers from ignorance

For each product rule, phase $\theta = \arg(x)$ is additive, $\arg(x \otimes y) = \arg(x) + \arg(y)$.

Hence representation of phase interval $\Delta\theta = \theta_2 - \theta_1$ is invariant to offsets.

Hence prior probability that we (initially ignorant) assign to a phase interval is invariant to offsets.

$$\Pr(\theta) = \text{constant}$$

Try rule A (complex numbers): range is cyclic from 0 to 2π . $\Pr(\theta) = \frac{1}{2\pi}$, uniform from 0 to 2π .

Try rule B or rule C: range unlimited $\theta \in (-\infty, \infty)$. No proper prior.

Rule A alone allows identification of uncertainty, as phase θ of a pair.

Representation of object is based on complex numbers. !

$$\text{Quantity} \sim r, \text{ uncertainty} \sim \theta$$

Want **A and B and C** instead of **A or B or C**.

Rules A and B give us generators of the form $X = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $Y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $YX = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = Z$

These define a four-element group spanned by $\{\mathbf{1}, X, Y, Z\}$ with multiplication table

$\downarrow \cdot \rightarrow$	$\cdot \mathbf{1}$	$\cdot X$	$\cdot Y$	$\cdot Z$
$\mathbf{1} \cdot$	$\mathbf{1}$	X	Y	Z
$X \cdot$	X	-1	$-Z$	Y
$Y \cdot$	Y	Z	1	X
$Z \cdot$	Z	$-Y$	$-X$	1

This demands a 4-parameter representation.

Rules A and B

All this still works even if (as will be the case) parameters are complex instead of real.

The four-element group $\{\mathbf{1}, X, Y, Z\}$ is upgraded to $\{\mathbf{1}, X, Y, Z; i, iX, iY, iZ\}$ where $i^2 = -1$.

The multiplication table

$\downarrow \cdot \rightarrow$	$\cdot \mathbf{1}$	$\cdot X$	$\cdot Y$	$\cdot Z$	$\cdot i$	$\cdot iX$	$\cdot iY$	$\cdot iZ$
$\mathbf{1} \cdot$	$\mathbf{1}$	X	Y	Z	i	iX	iY	iZ
$X \cdot$	X	-1	$-Z$	Y	iX	$-i$	$-iZ$	iY
$Y \cdot$	Y	Z	1	X	iY	iZ	i	iX
$Z \cdot$	Z	$-Y$	$-X$	1	iZ	$-iY$	$-iX$	i
$i \cdot$	i	iX	iY	iZ	-1	$-X$	$-Y$	$-Z$
$iX \cdot$	iX	$-i$	$-iZ$	iY	$-X$	1	Z	$-Y$
$iY \cdot$	iY	iZ	i	iX	$-Y$	$-Z$	-1	$-X$
$iZ \cdot$	iZ	$-iY$	$-iX$	i	$-Z$	Y	X	-1

is upgraded to 8×8 .

This is the Lorentz group !

As in all groups, the identity $\mathbf{1}$ is special. Its coefficient gives *quantity*.

The pseudoscalar i commutes with everything so is also special.

Its coefficient is *rate of change*, with respect to phase. For any complex number(s), $\frac{d}{d\theta}(re^{i\theta}) = i re^{i\theta}$.

Rule C

$i = \frac{d}{d\theta}$ implements rule C operating on $\begin{bmatrix} r \\ \theta \end{bmatrix}$.

Lorentz factorisation

The group was $\{1, X, Y, Z; i, iX, iY, iZ\}$.

1 was interpreted as *quantity*.

i was interpreted as *evolution*.

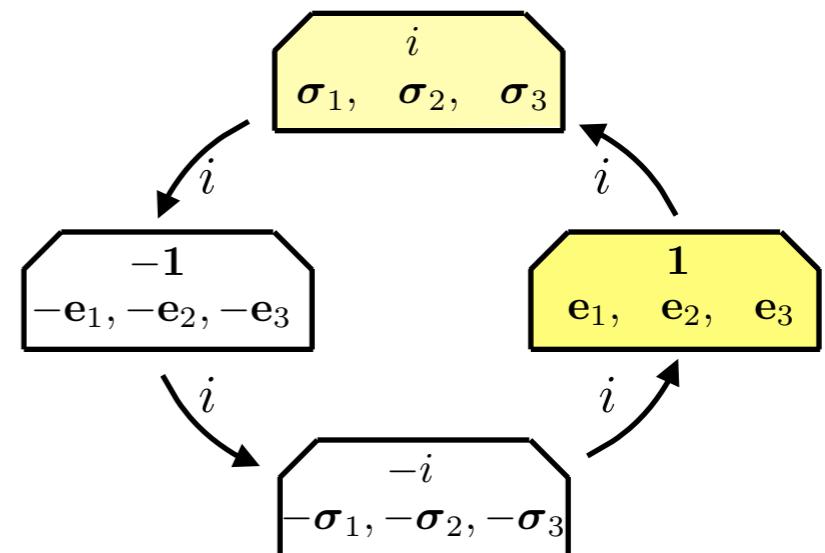
Of the other elements, $X, iY, -iZ$ square to -1 (4th order); relabel as $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$;
while $iX, -Y, Z$ square to $+1$ (2nd order); relabel as $(i\mathbf{e}_1, i\mathbf{e}_2, i\mathbf{e}_3) = (\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \boldsymbol{\sigma}_3)$.

Pauli matrices

Lorentz group can be relabelled $\underbrace{\{1, i\}}_{\text{complex}} \times \underbrace{\{1, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}}_{\text{quaternion}} = \underbrace{\{1, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}}_{\text{real}}; \underbrace{i, \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \boldsymbol{\sigma}_3}_{\text{imaginary}}$

biquaternion

$\downarrow \cdot \rightarrow$	$\cdot 1$	$\cdot \mathbf{e}_1$	$\cdot \mathbf{e}_2$	$\cdot \mathbf{e}_3$	$\cdot i$	$\cdot \boldsymbol{\sigma}_1$	$\cdot \boldsymbol{\sigma}_2$	$\cdot \boldsymbol{\sigma}_3$
$1 \cdot$	1	\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3	i	$\boldsymbol{\sigma}_1$	$\boldsymbol{\sigma}_2$	$\boldsymbol{\sigma}_3$
$\mathbf{e}_1 \cdot$	-1	\mathbf{e}_3	$-\mathbf{e}_2$		$\boldsymbol{\sigma}_1$	$-i$	$\boldsymbol{\sigma}_3$	$-\boldsymbol{\sigma}_2$
$\mathbf{e}_2 \cdot$	$-\mathbf{e}_3$	-1	\mathbf{e}_1		$\boldsymbol{\sigma}_2$	$-\boldsymbol{\sigma}_3$	$-i$	$\boldsymbol{\sigma}_1$
$\mathbf{e}_3 \cdot$	\mathbf{e}_2	$-\mathbf{e}_1$	-1		$\boldsymbol{\sigma}_3$	$\boldsymbol{\sigma}_2$	$-\boldsymbol{\sigma}_1$	$-i$
$i \cdot$	i	$\boldsymbol{\sigma}_1$	$\boldsymbol{\sigma}_2$	$\boldsymbol{\sigma}_3$	-1	$-\mathbf{e}_1$	$-\mathbf{e}_2$	$-\mathbf{e}_3$
$\boldsymbol{\sigma}_1 \cdot$	$-i$	$\boldsymbol{\sigma}_3$	$-\boldsymbol{\sigma}_2$		$-\mathbf{e}_1$	1	$-\mathbf{e}_3$	\mathbf{e}_2
$\boldsymbol{\sigma}_2 \cdot$	$-\boldsymbol{\sigma}_3$	$-i$	$\boldsymbol{\sigma}_1$		$-\mathbf{e}_2$	\mathbf{e}_3	1	$-\mathbf{e}_1$
$\boldsymbol{\sigma}_3 \cdot$	$\boldsymbol{\sigma}_2$	$-\boldsymbol{\sigma}_1$	$-i$		$-\mathbf{e}_3$	$-\mathbf{e}_2$	\mathbf{e}_1	1



$\{1, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ factors out as the subgroup of *quaternions*.

$$\mathbb{L} = \mathbb{C} \times \mathbb{H} !$$

The witches' brew

$$\underbrace{\{1, i\}}_{\text{uncertainty}} \times \underbrace{\{1, e_1, e_2, e_3\}}_{\text{mathematics}} \underbrace{\qquad\qquad\qquad}_{\text{the language of physics}}$$

Add logic and stir.

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication
 $i^2 = j^2 = k^2 = ijk = -1$
& cut it on a stone of this bridge

John Skilling and Kevin Knuth at the quaternion plaque in Dublin, 13 April 2024.

Relativistic quantum formalism is just the arithmetic of number pairs !

Sum rule from associative commutativity of content.
Product rules from associative distributivity of operators.
Number pairs, for quantity and uncertainty. } *Simple and general.
No other assumptions.*

We recognise {
complex numbers underlying physics
phase as ignorance accompanying quantity
quantification by Born rule
Lorentz group
4-spin and 4-momentum
three-dimensional space
special relativity with Minkowski metric
matter and antimatter
the Dirac equation
conservation of quantity