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’ The Instability Issue
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Stability Selection

* Abase selection algorithm

p
Bo(A),B(A) = argmin (HY —Bo— XBI5+21D |5k|>
k=1

ﬂO eR™ ’:3 €RP

* Draw B random sub-samples of observations without replacement

 Foreach A, apply Lasso on each sub-sample

gstable .— {4 | Ii?f(ff\) > Tene}; J=1,...,p

Meinshausen, N., & Buhlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 72(4), 417-47 3.
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What about Inference?

* The authors treat selection frequencies as selection probabilities
* Valid inference requires incorporating prior knowledge

e Beta-Binomial framework

B
n} =Y M(\); ~ Binomial(B,1I}); j=1,...,p
b=1
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Quick Refresher

Beta Distributions

Distribution = Beta(1,1) Beta(1,15) == Beta(1,40)

Beta(15,1) = Beta(40,1)
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From Priors to Posteriors

(M)~ (1 —13)P—t
B(a, B5) ’

(I K) =

j j=1,...,p and Oéj,,BjZ].

B A ) ,
)@ -y =1

n;

L(n}|I1},K) = (

r(In, K) oc (I ~14m5 (1 — I1})Pi—1+B=nj
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How to Set Priors?

 Existing approaches either fix the mean and variance of the distributions to
determine their parameters, or

« Assume large 3 and small a values to enforce sparsity
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Desiderata

* Transparently translating prior knowledge about variable relevance

* Managing the degree of subjectivity in the final results through considering

observations vs. pseudo-observations
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Prior Elicitation

Question 1 Considering that the final results are a synthesis of both your opinions and
data-driven insights, what percentage of the final results for the jth variable would you prefer
to be influenced by your prior knowledge, up to a maximum of 50%?

Ci= i
7T v+ B

Vj = o+ 5
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Prior Elicitation

Question 2 Based on your knowledge and expertise, what percentage of the data-driven
experiments do you expect to indicate that the jth variable is relevant to the response
variable?

aj = |&y;] and B =1, —q;
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’ Weakly Informative Priors

Beta Distributions (Haldane spikes indicated)

Distribution = Beta(0.5,0.5) == Beta(1,1)
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Selection Stability

Variance of Posterior Selection Probability Variance of Posterior Selection Probability Variance of Posterior Selection Probability
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Variance of the posterior selection probability as a function of o; when B = 100 and
n} € {30,50,70}
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Selection Stability

Variance of Posterior Selection Probability Variance of Posterior Selection Probability
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Variance of the posterior selection probability as a function of a; when B = 100 and
n;‘ € {10,90}
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Selection Stability
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Variance of the posterior selection probability as a function of o;; and n;‘ when B = 100
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Selection Accuracy

GstableBayes )y . £, | E(H;‘ln;‘,K) > Tne}; J=1,...,p

; = 50% and &; = 100%

f;\ 2 271-thr_]-
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Selection Accuracy

Remark Assume ¢; = 50% and £; = 100% for all j € N, and let V := |[N n §stableBayes(y))
denote the number of irrelevant variables selected by Bayesian stability selection. Using
the indicator function, we have V.= 3 .-y 1(j € gstableBayes (\)) ' g6 that E(V|\, K) =

> JEN Pr( f;‘ > 27y — 1A, K). If irrelevant variables are exchangeable, this simplifies to
E(V|A\ K) = |N| Pr(fj)‘ > 2mgne —1|A, K). Suppose that there exists a sequence €| — 0 such
that, uniformly over all j € N, Pr(f;‘ > 2mnr — 1A, K) < €. Then E(V|A, K) < [Nle -
In particular, if €5 = o(1/|NJ), it follows that |[N|e x| — 0 as [N| — oo, implying that
E(V|A, K) — 0 asymptotically.
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Selection Accuracy

* Frequentist upper-bounds on the number of falsely selected variables

remain valid asymptotically under weakly informative priors
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Bayesian Stability Selection and Inference on Selection
Probabilities

Mahdi Nouraie®!, Connor Smith®!, and Samuel Muller®*1-2

1School of Mathematical and Physical Sciences, Macquarie University
2School of Mathematics and Statistics, The University of Sydney

Abstract

Stability selection is a versatile framework for structure estimation and variable selection
in high-dimensional setting, primarily grounded in frequentist principles. In this paper,
we propose an enhanced methodology that integrates Bayesian analysis to refine the in-
ference of selection probabilities within the stability selection framework. Traditional
approaches rely on selection frequencies for decision-making, often disregarding domain-
specific knowledge. Our methodology uses prior information to derive posterior distri-
butions of selection probabilities, thereby improving both inference and decision-making.
We present a two-step process for engaging with domain experts, enabling statisticians
to construct prior distributions informed by expert knowledge while allowing experts to
control the weight of their input on the final results. Using posterior distributions, we
offer Bayesian credible intervals to quantify uncertainty in the variable selection process.
Furthermore, we demonstrate how the integration of prior knowledge reduces the vari-
ance of selection probabilities, thereby improving the stability of decision-making. Our
approach preserves the versatility of stability selection and is suitable for a broad range
of structure estimation challenges.

Keywords: Bioinformatics, Bayesian Inference, Feature Selection, Prior Elicitation, Structure
Estimation, Variable Selection
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Contact Information

mahdi.nouraie@hdr.mg.edu.au https://mahdinouraie.quarto.pub
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