

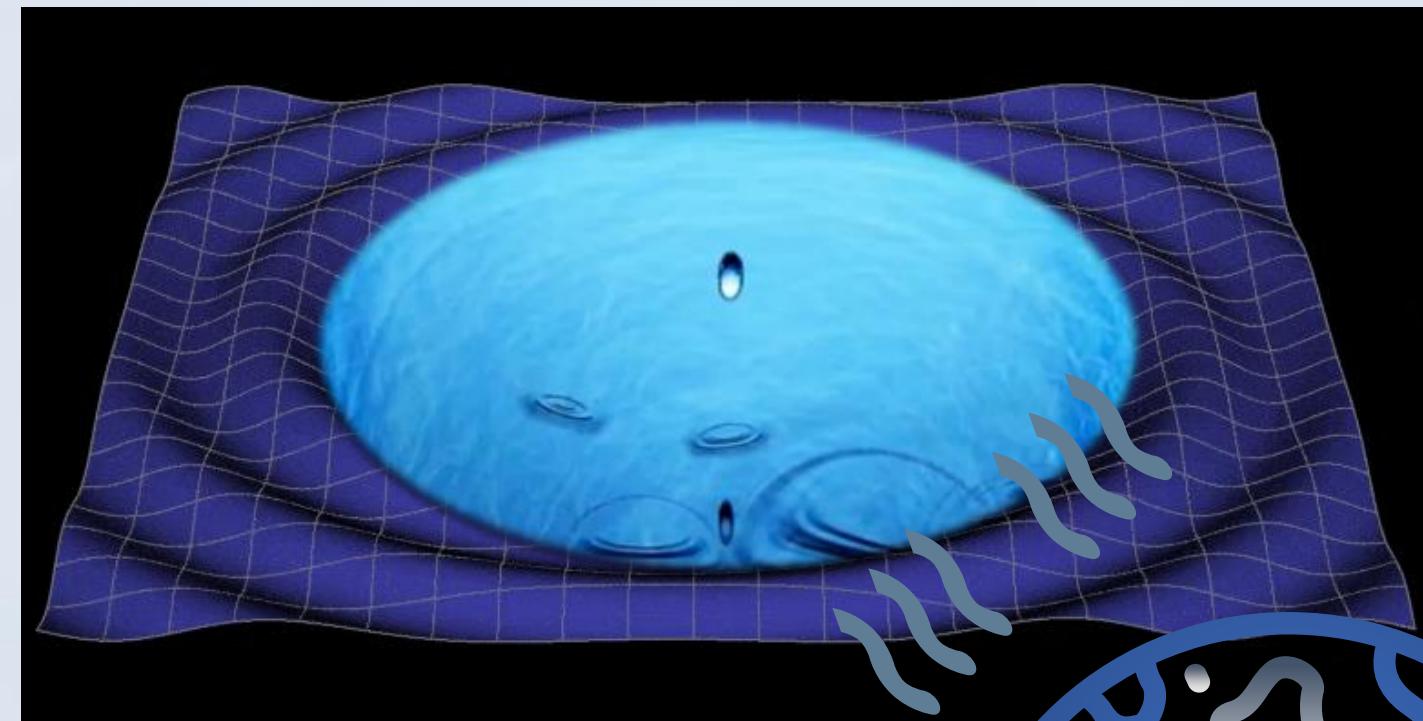
Maxent 2025 in Auckland

# **Inference from Imperfection: Rapid Gravitational Wave Parameter Estimation with Data Gaps in LISA using conditional Flow Matching**

Ruiting(Mica) Mao  
with Kate Lee and Matt Edwards  
University of Auckland

Dec 2025

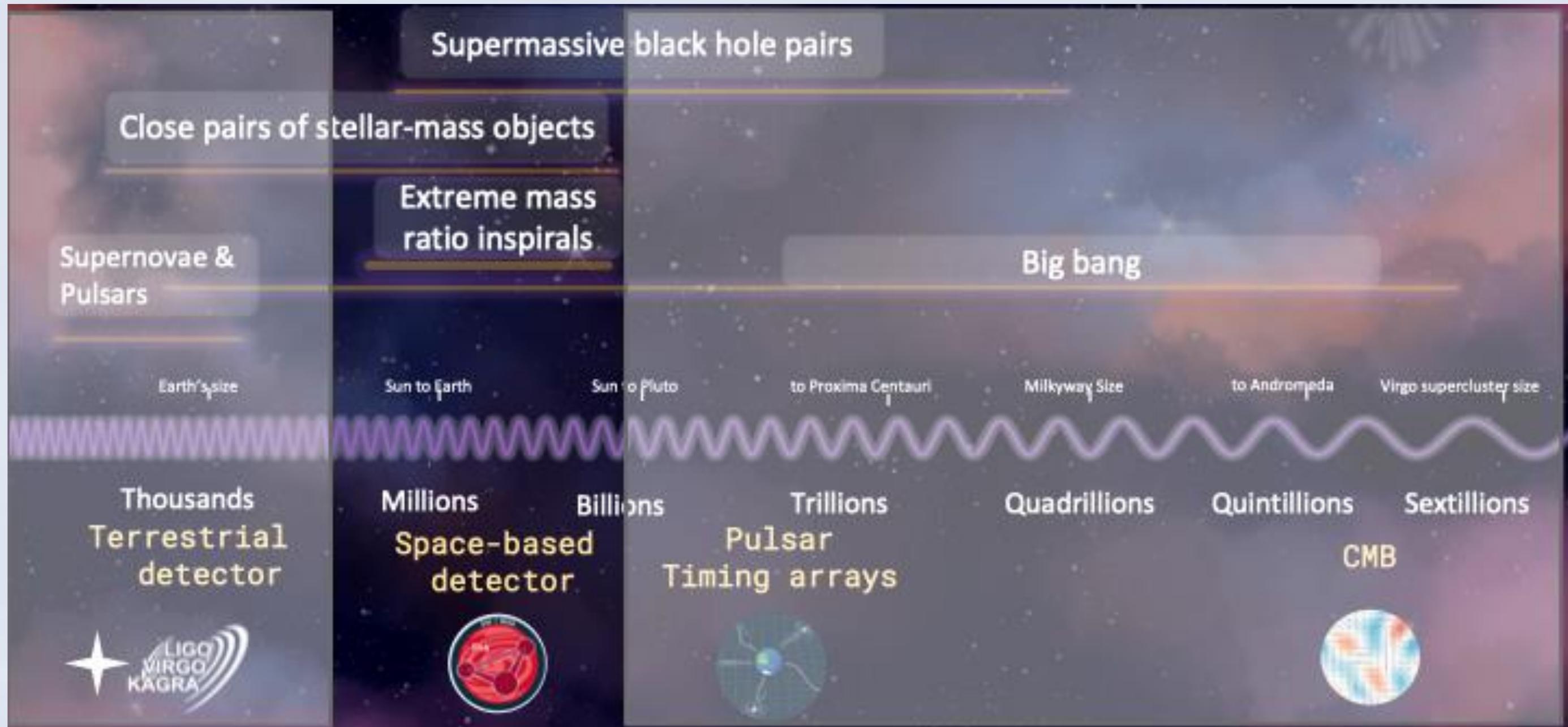
# GW : Ripples in Space-Time

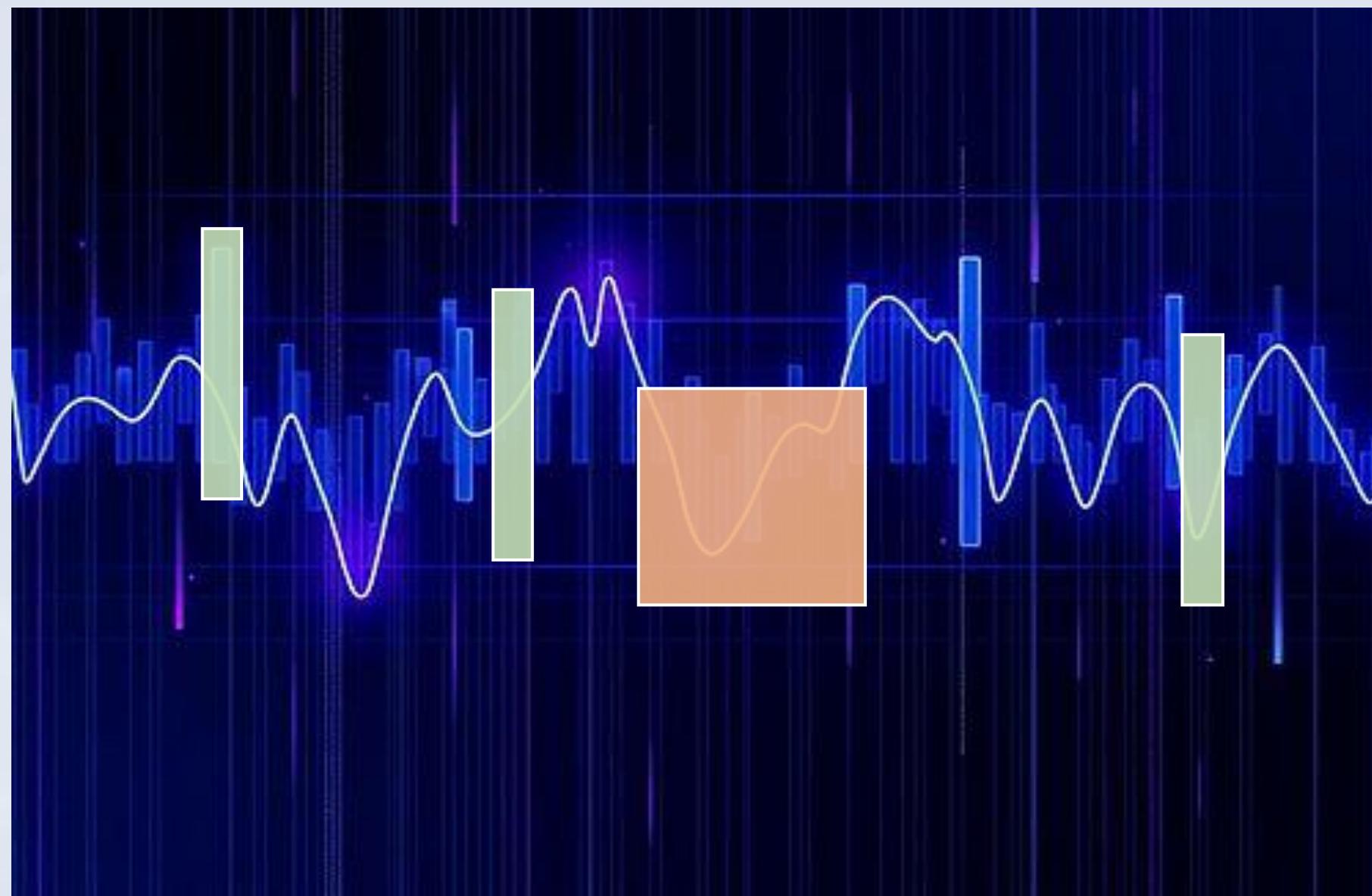


# Being in space: LISA



# LISA: millihertz frequency band





# The Core Problem:

## Biased Inference

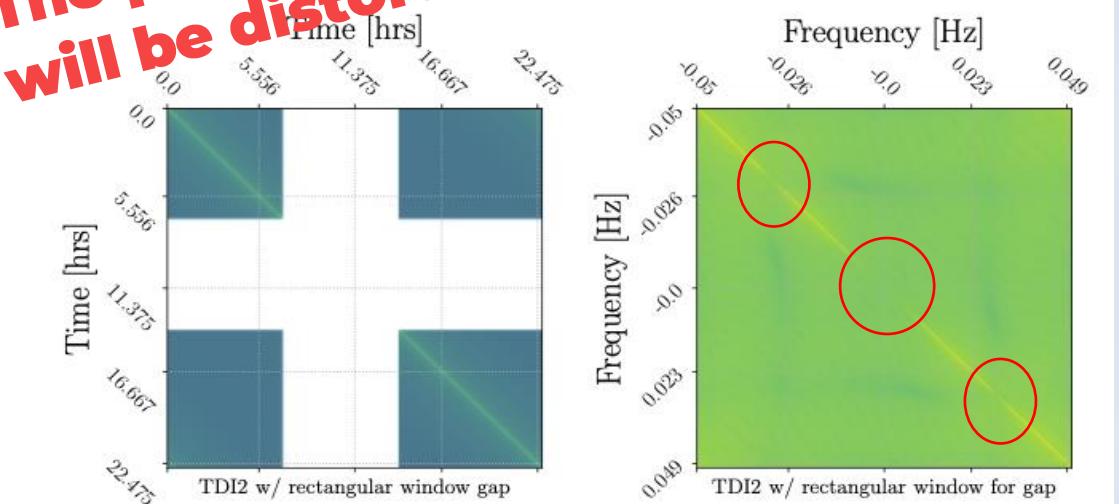
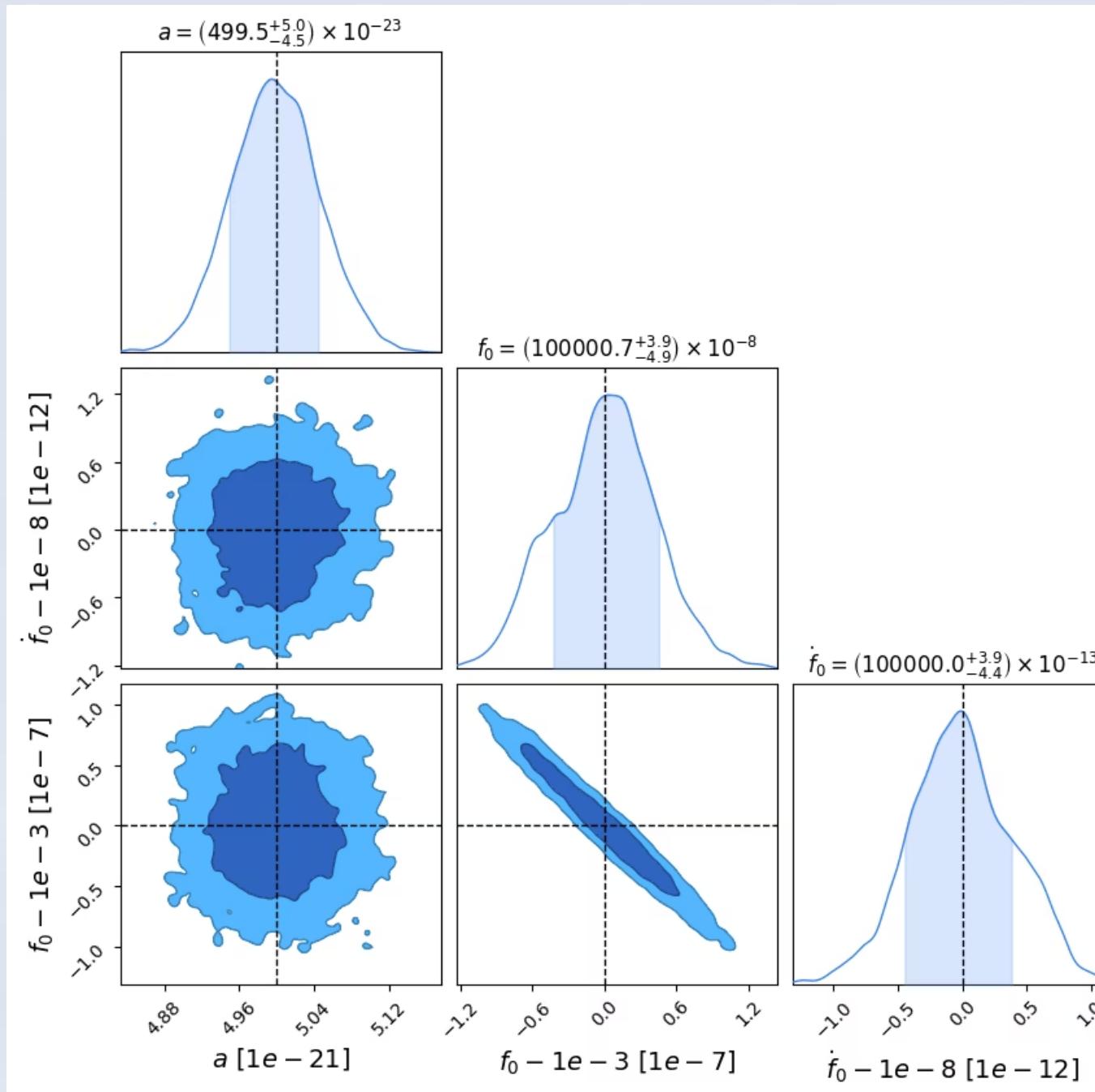
Bayesian inference with Whittle likelihood :

$$p(d|\theta) = -\frac{1}{2} \sum (d - h_m | d - h_m)$$

Assuming stationary Gaussian noise :

$$\text{Re}(\hat{n}(f_i)), \text{Im}(\hat{n}(f_i)) \sim \mathcal{N}\left(0, \frac{S_n(f_i)}{4\Delta f}\right)$$

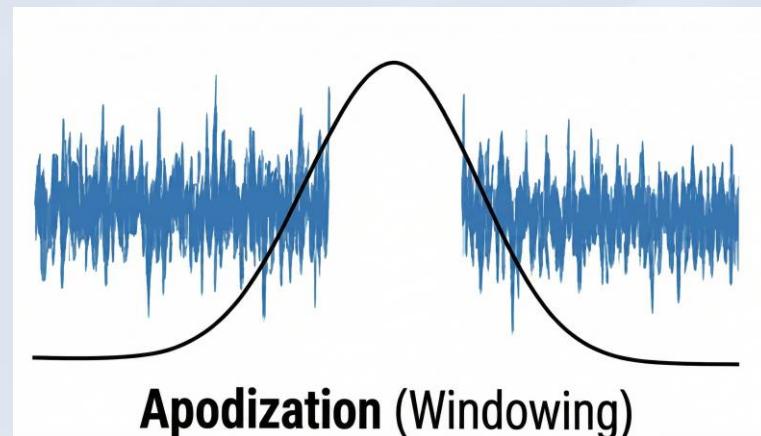
**The parameter estimation with MCMC will be distorted!**



# Previous Research

## Standard & Apodization Techniques

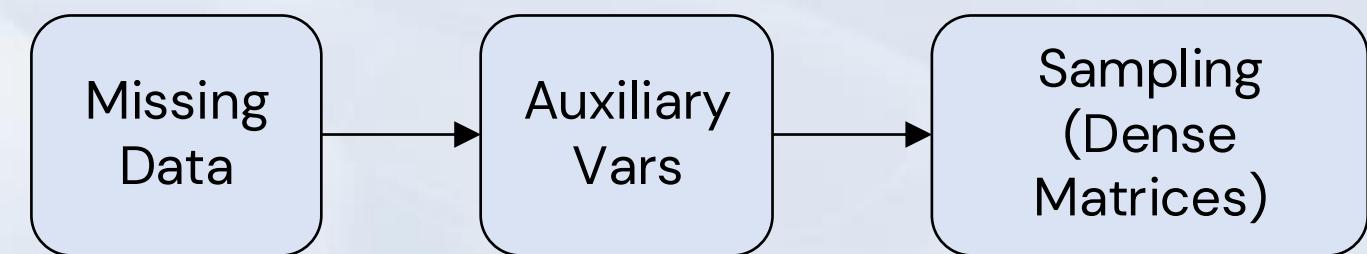
**Windowing[2014]:** forced to throw away data, with loss of information



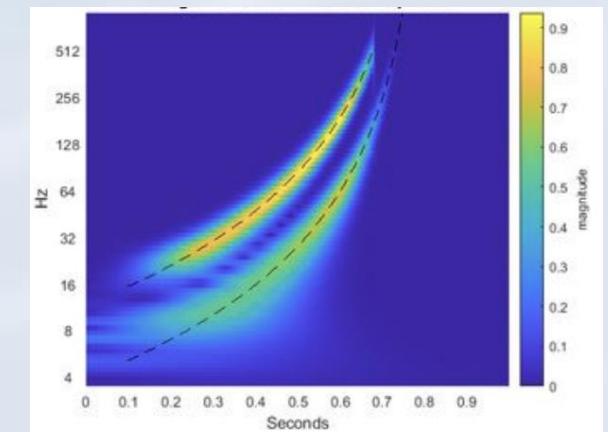
**Critique:** Alters noise stochasticity, violates stationarity, biases estimation [Burke et al., 2025]

## Reconstruction: Augmentation

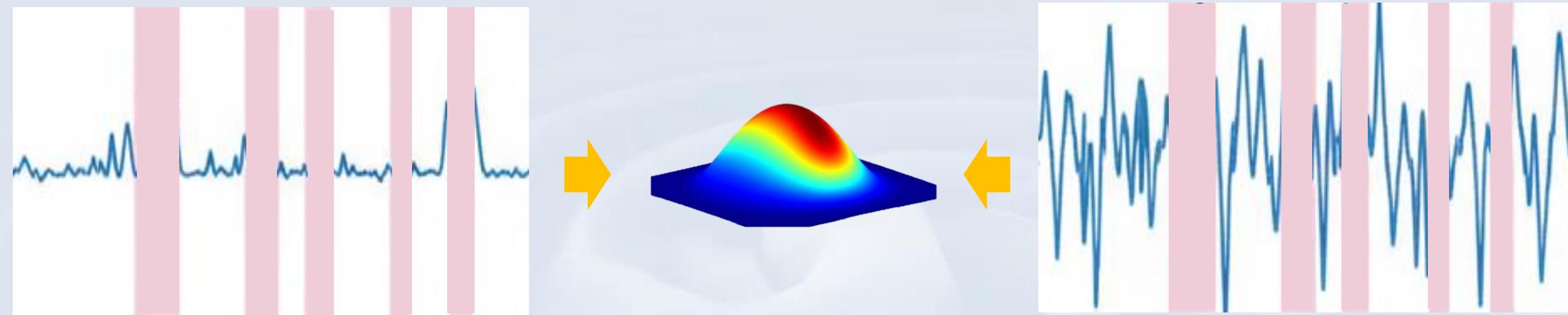
- **Bayesian Data Augmentation[2019]:** Computationally prohibitive for long signals



- **Wavelet Domain Augmentation [2025]:** Relies on strict local stationarity assumption.



# From Imputation to Direct Inference

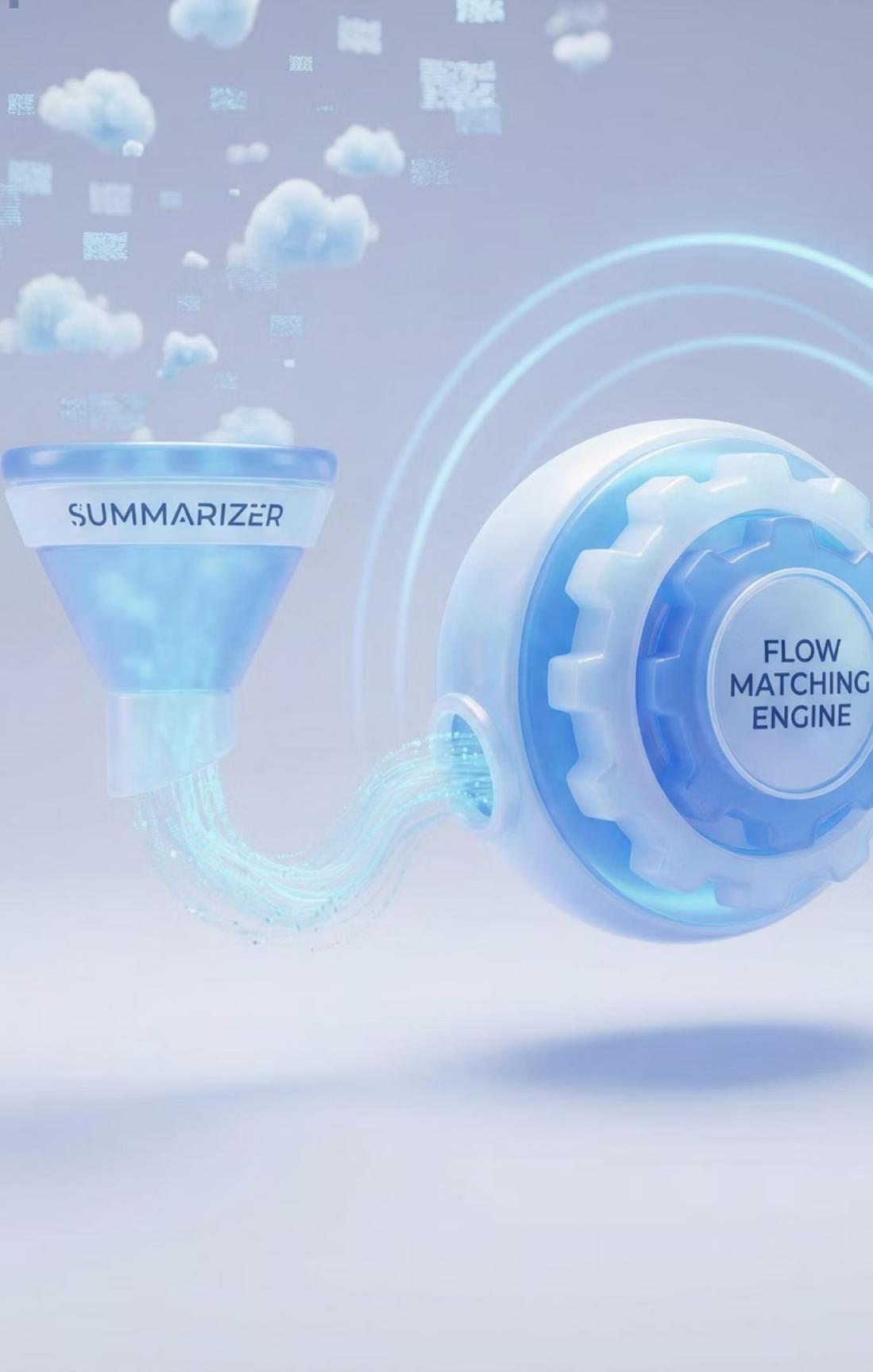


Previous Work:  
Imputation: BiGRU-CAE

Denoising is needed when considering real signal

Target: Direct parameter Inference from “gapped” signal

# A Robust, Scalable SBI Framework



# Architecture: Embed & Flow

## The Summarizer

This network compresses the high-dimensional input  $d(t)$  into a low-dimensional, dense summary statistic vector,  $s$ .

## The Flow Matching Engine

Takes  $s$  as input, which conditions the vector vector field  $v_t(\theta/s)$ , transforming the base base distribution into the final posterior  $p(\theta/d)$ .

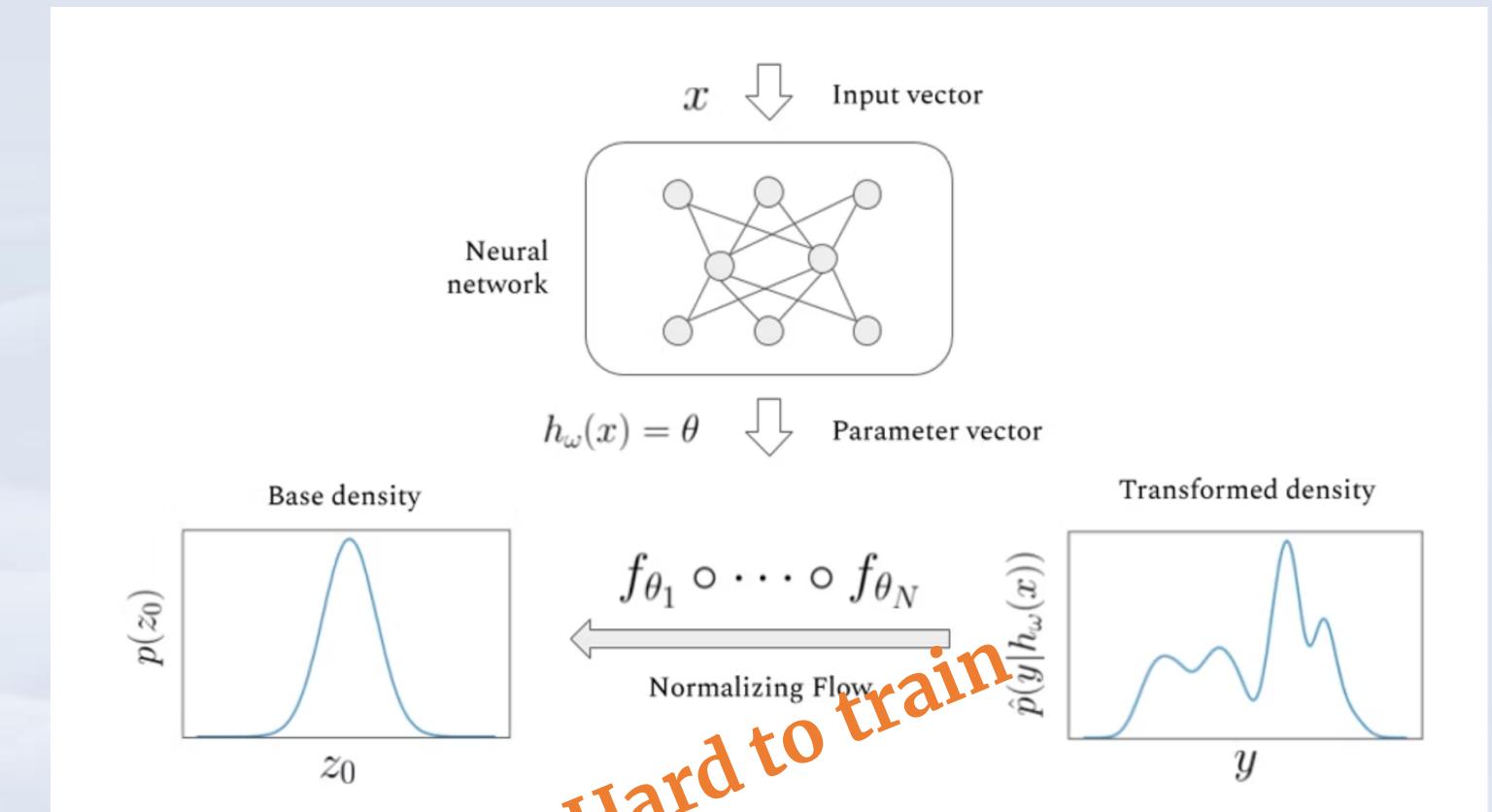
### Joint Training is Key

The Summarizer learns features that are specifically **optimized for parameter estimation**, ensuring the minimal amount of information is lost.

---

# Inference Engine: Why Flow Matching?

# Normalizing Flows: The Foundation



Simple Prior

Invertible Transform

Complex Posterior

# MAF: Forcing Invertibility

## The Constraint Challenge

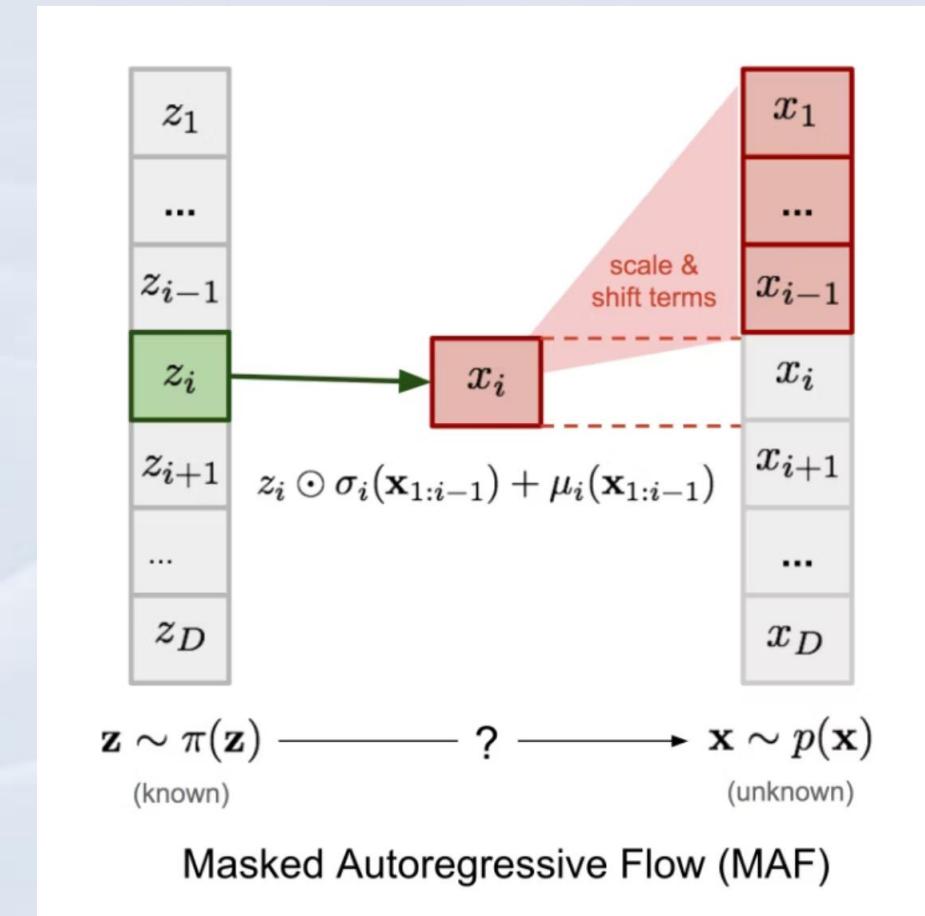
### Autoregressive NN for transformation layers

Restrictive architectural structure ensures invertibility

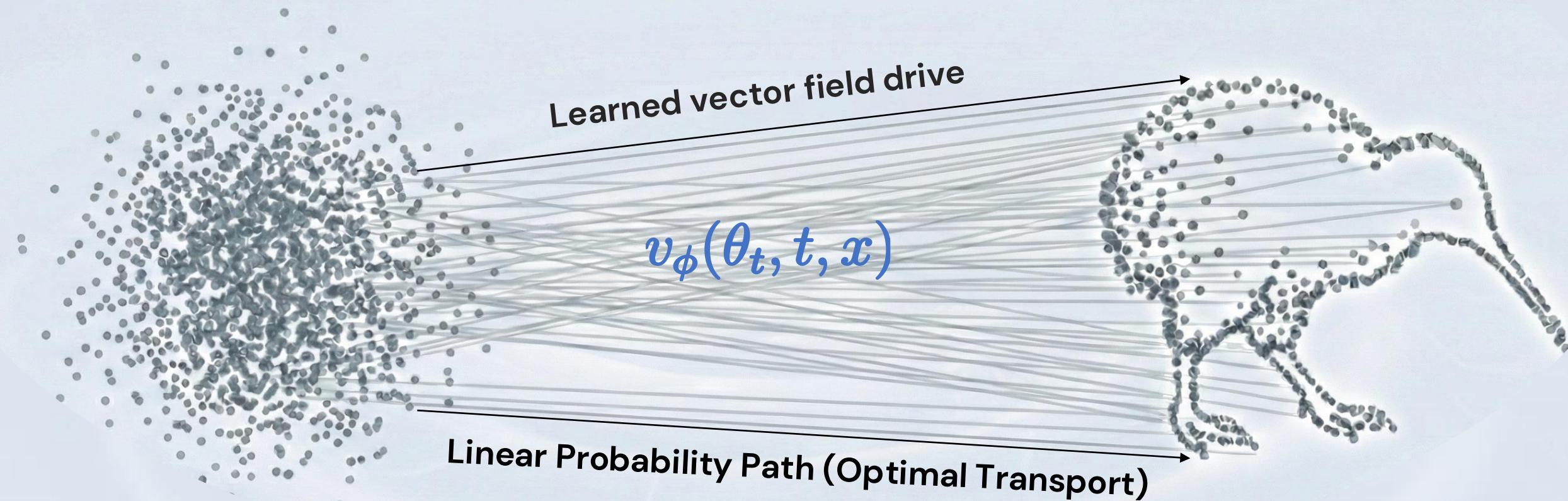
### Simplified Math

Tractable Jacobian determinant calculations

Might be unstable



# Flow Matching: Breaking Free



$$u_t(z, \theta) = \frac{d}{dt} \psi_t(z, \theta) = \theta - z$$

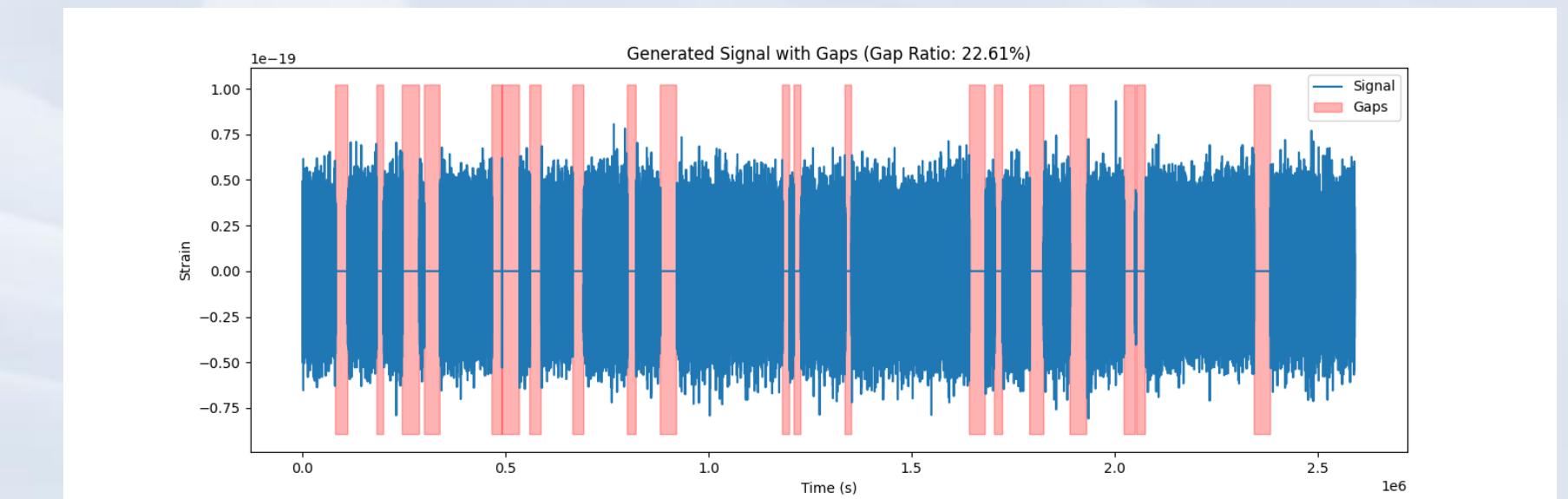
$\uparrow$   
 $(1 - t)z + t\theta$

$$\mathcal{L}(\phi) = \mathbb{E}_{t \sim \mathcal{U}(0,1), z \sim \pi(z), \theta \sim p(\theta|x)} [\|v_\phi(t, \psi_t(z, \theta), x) - (\theta - z)\|^2]$$

# FM VS MAF on 30-day GB-like signal

Input: signals with gaps in time domain

No worries about the spectral leakage during FFT



Date generated by GPU-accelerated *fastlisaresponse* package

# Summarizer discussion

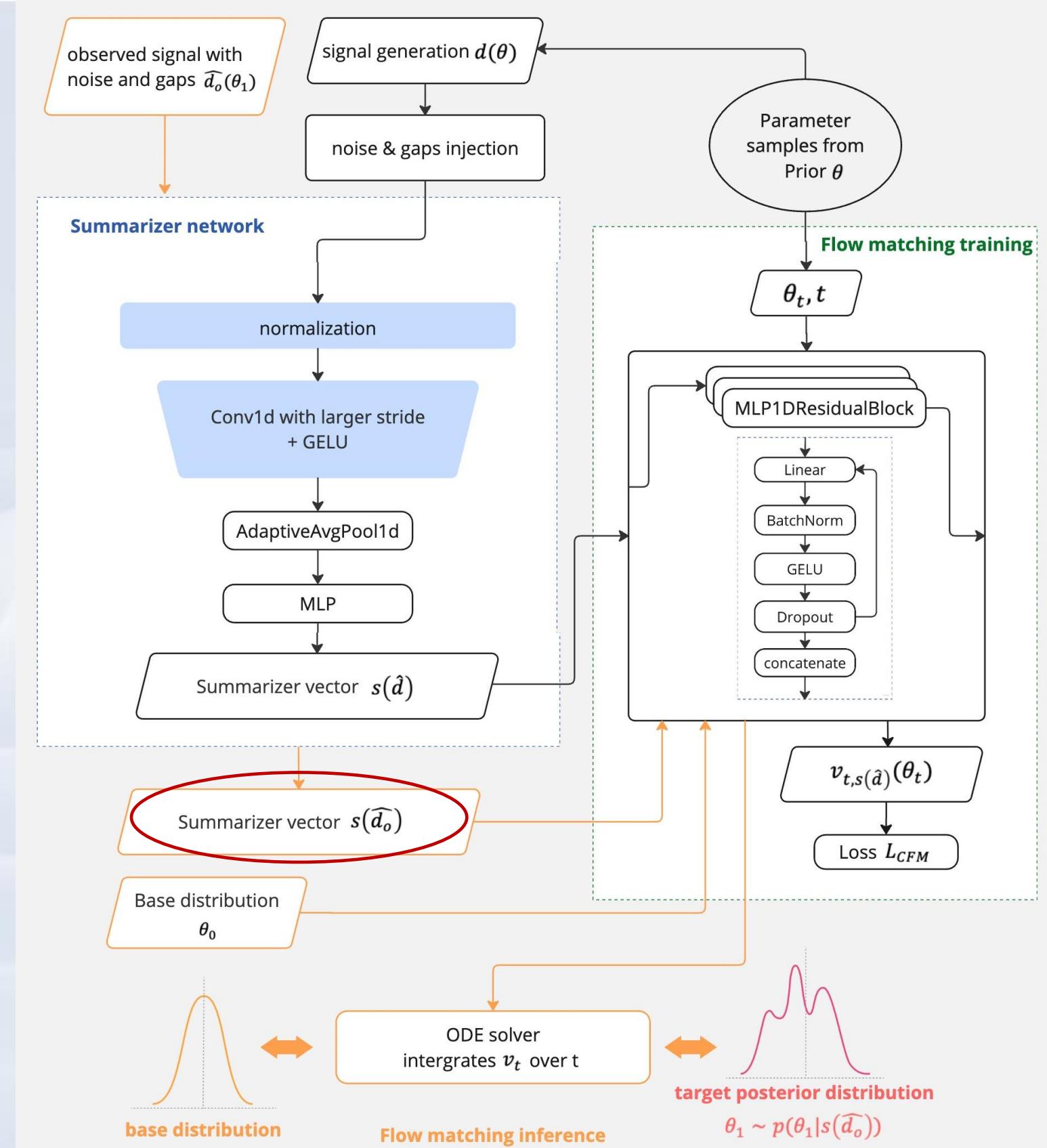
High dimension: 50K

Only think about the first layer if MLP applied...

50K\*512..... computational impossible

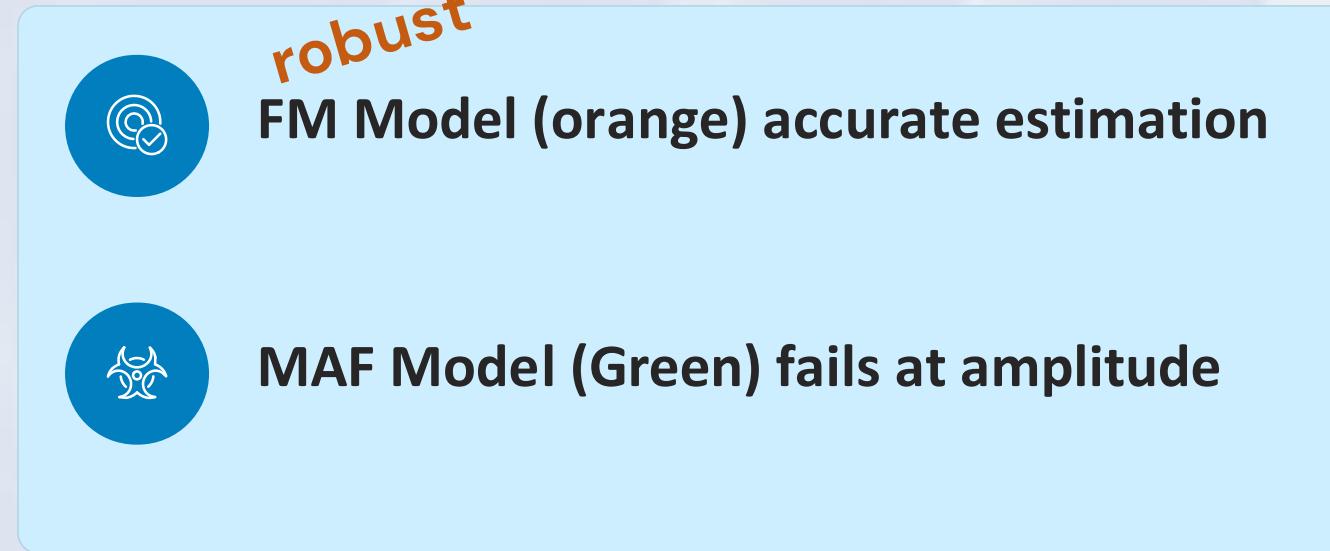
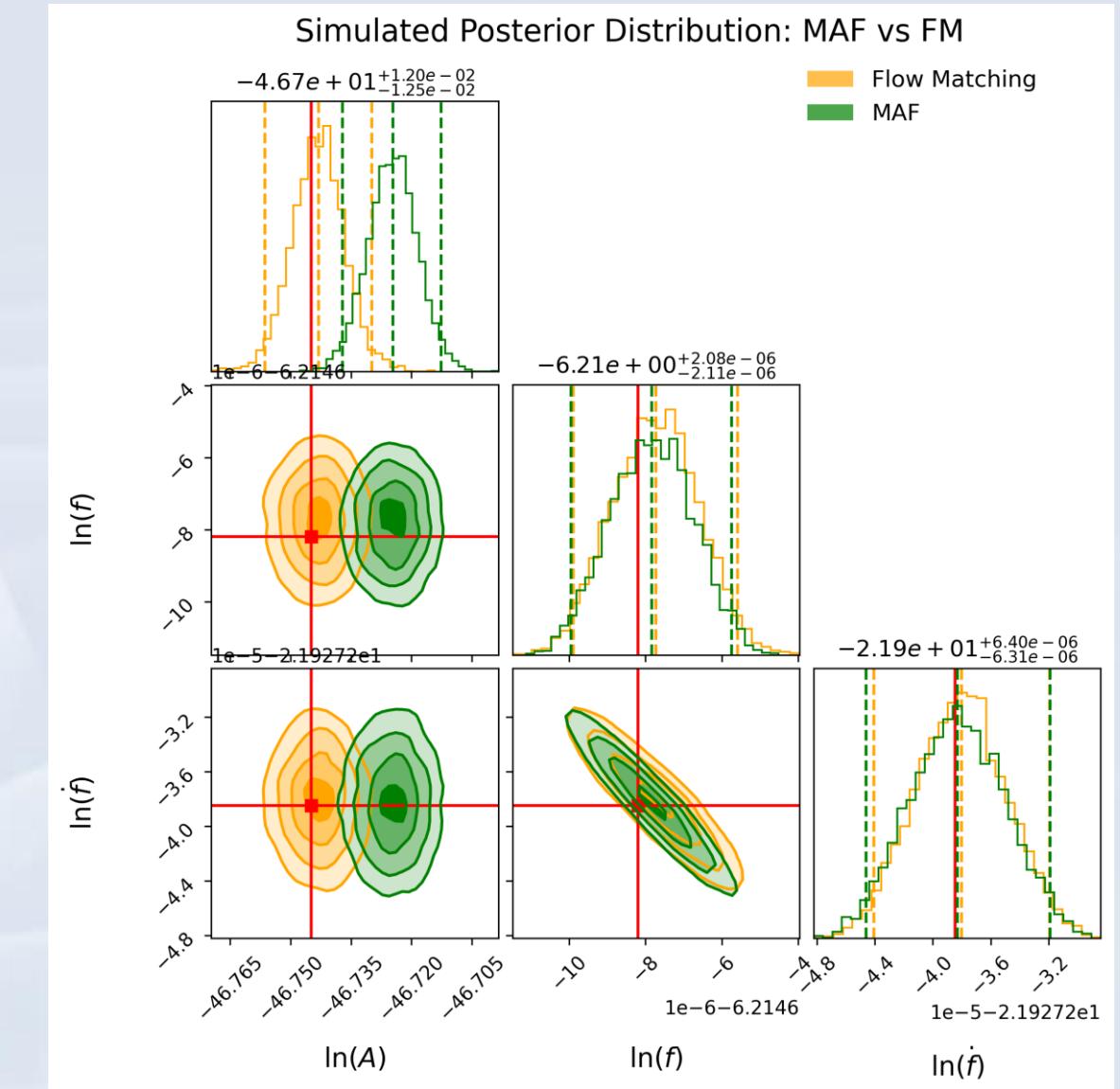
Conv1d with large stride layers are applied

curriculum training by adding noise gradually  
randomly adding gaps



# 30-Day Signal

## FM vs. MAF Comparison



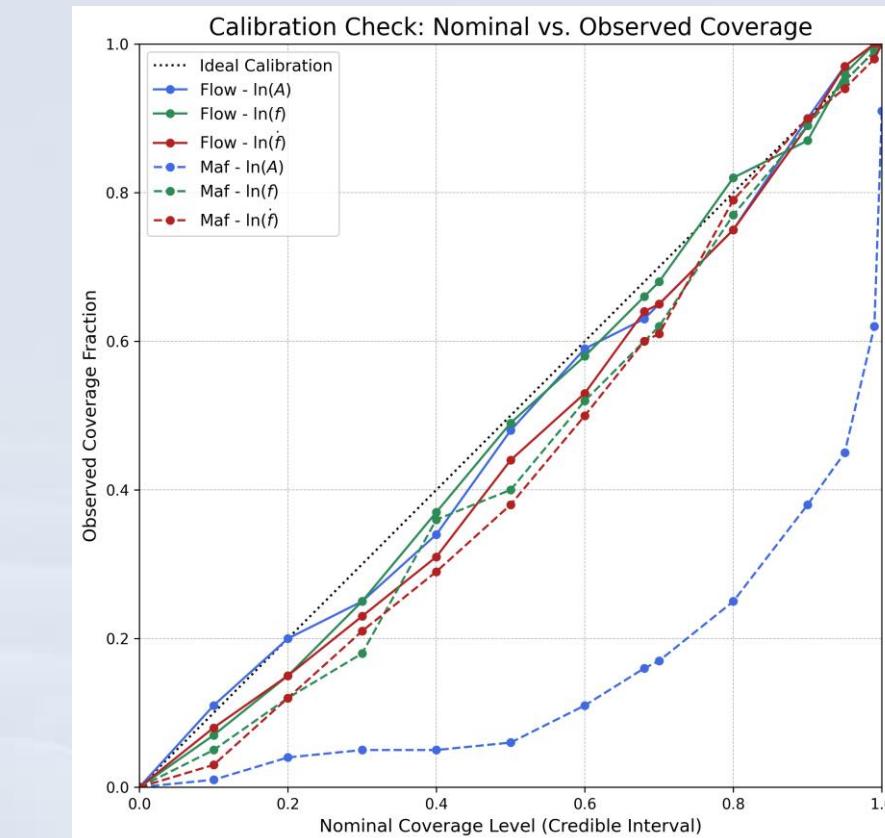
# Statistical reliability check



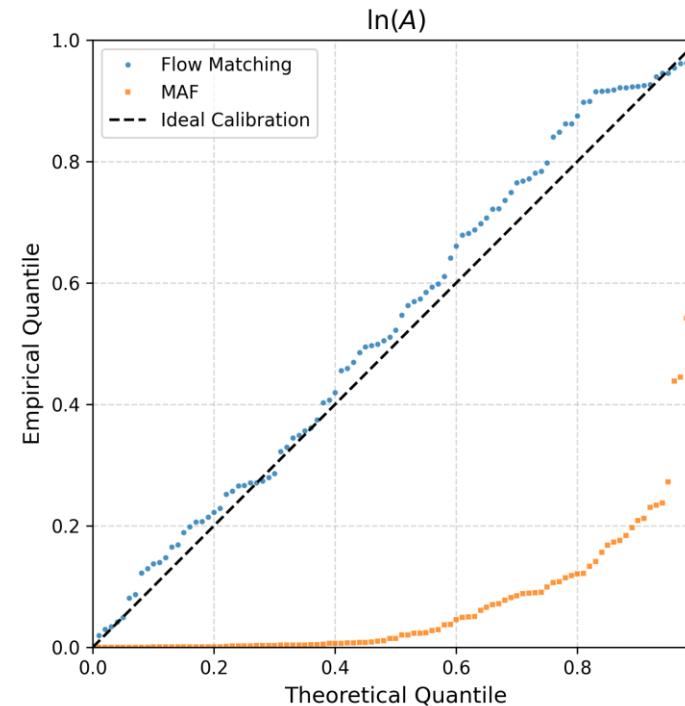
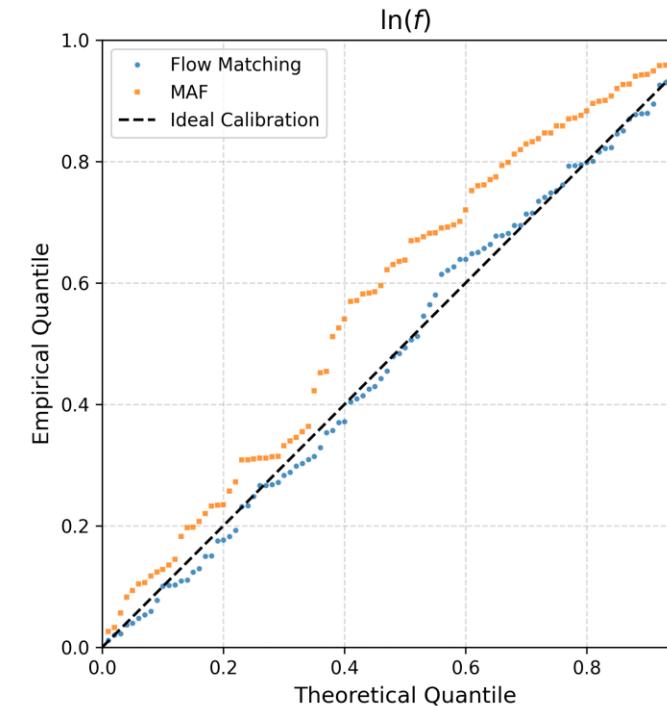
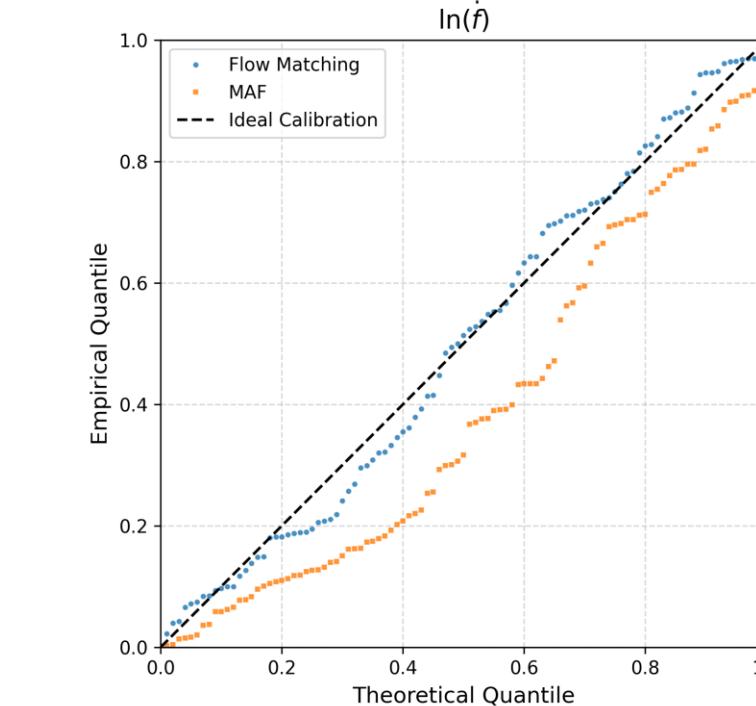
More stable

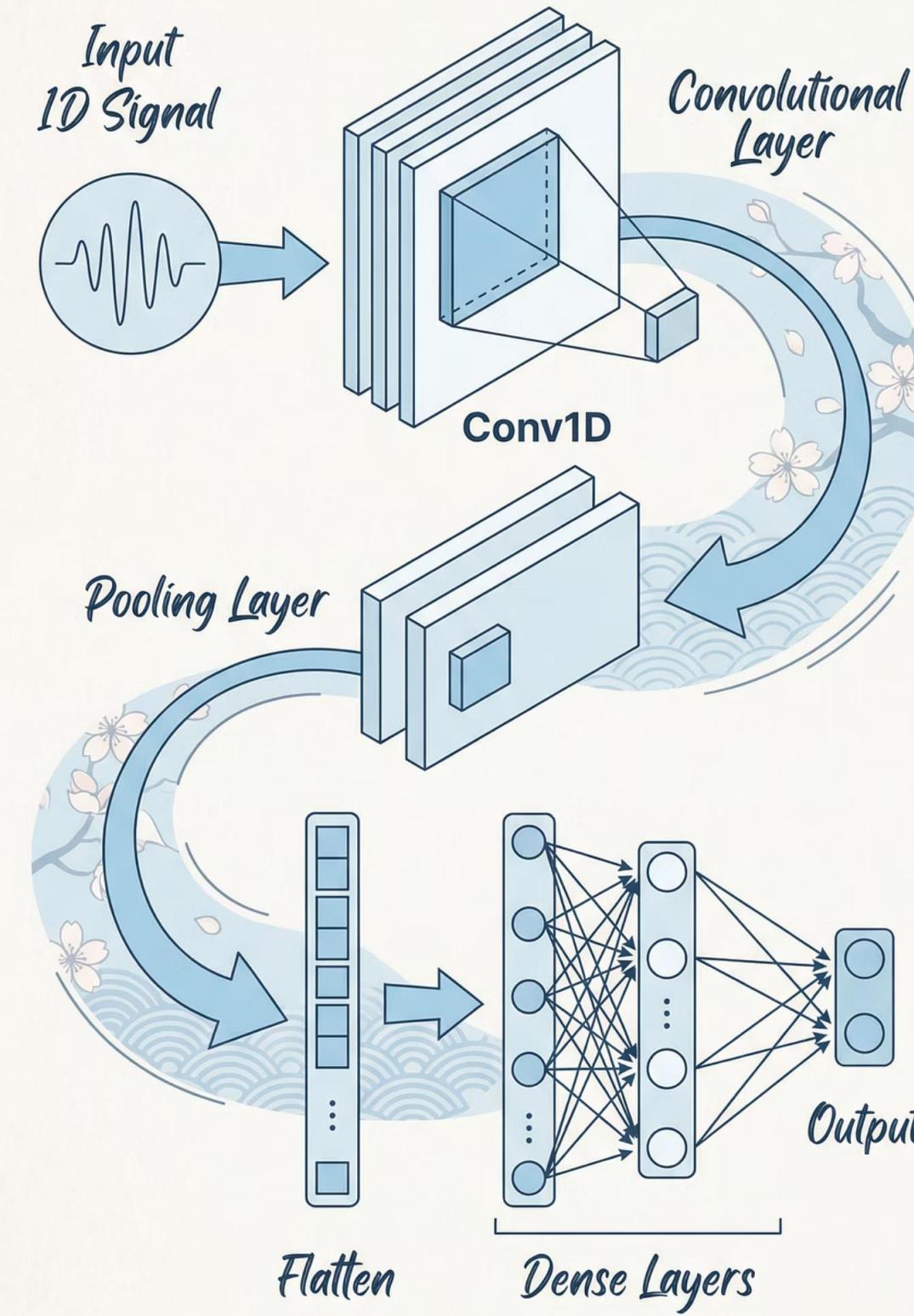


Well-Calibrated



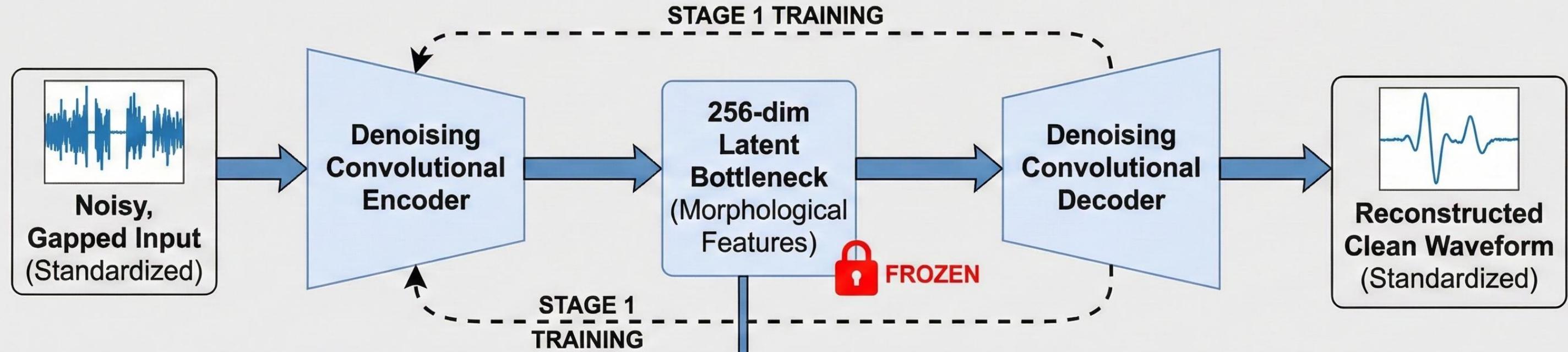
P-P Calibration Plots (100 Simulations)



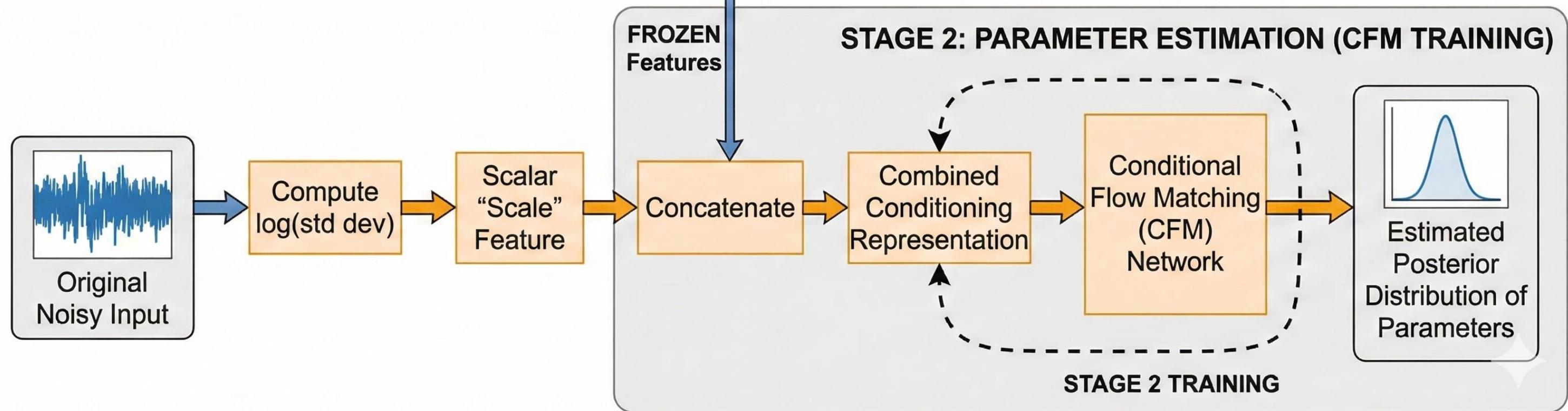


What if decoupling the summarizer during training?

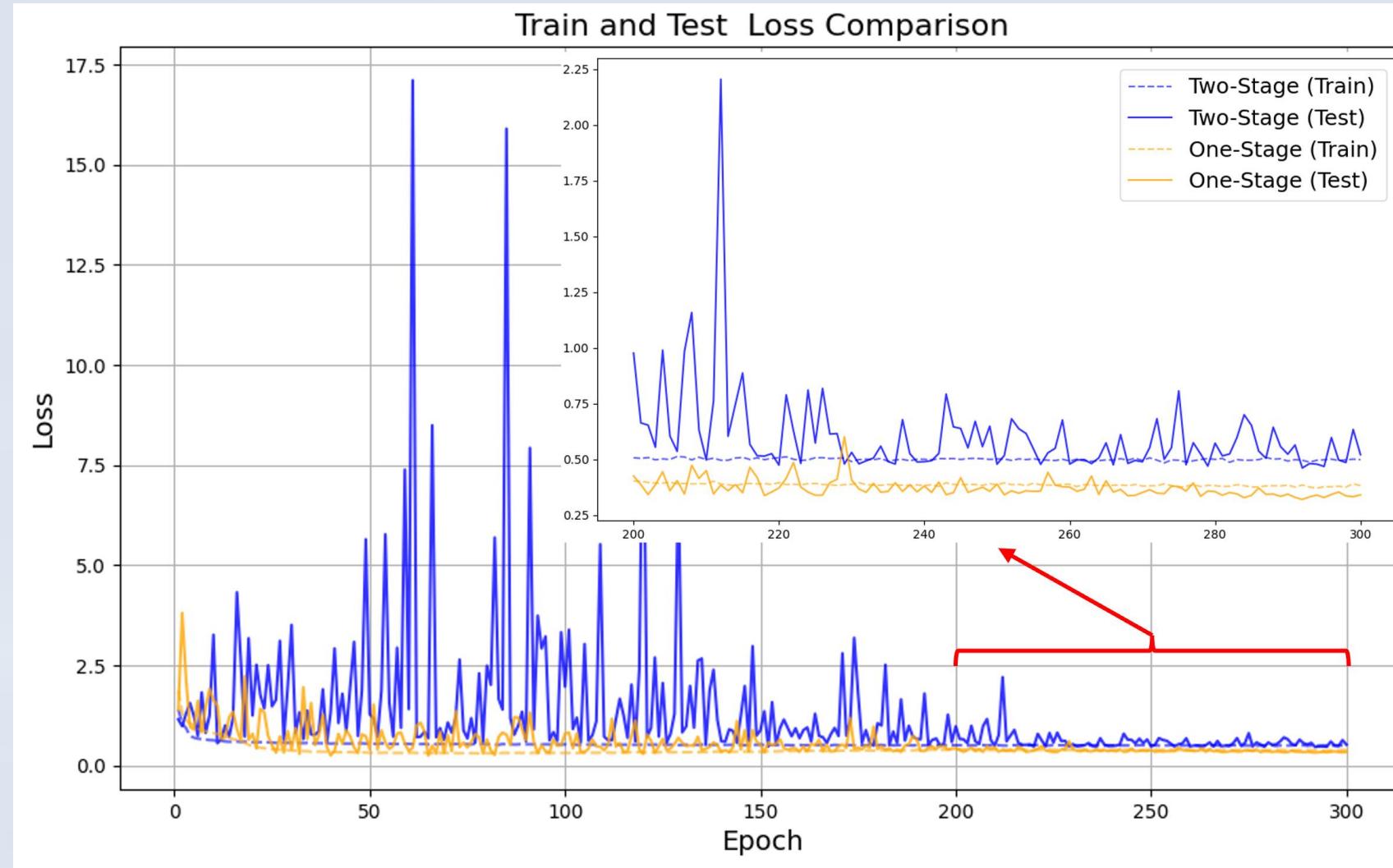
## STAGE 1: FEATURE EXTRACTION (DCAE TRAINING)



## STAGE 2: PARAMETER ESTIMATION (CFM TRAINING)



# Joint vs decoupled training



Joint Training

Validation Loss

0.38

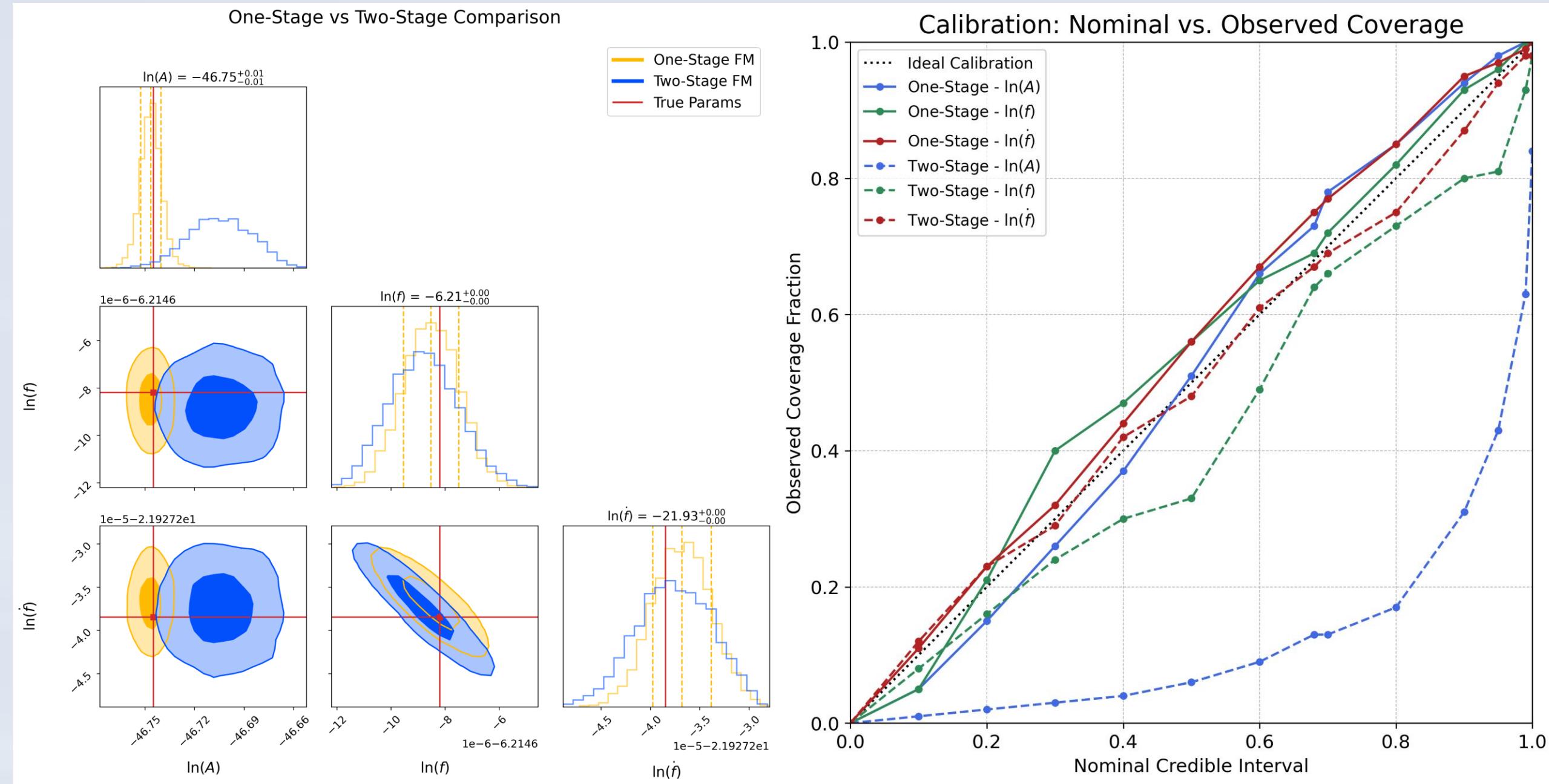
Two-Stage

Validation Loss

0.50

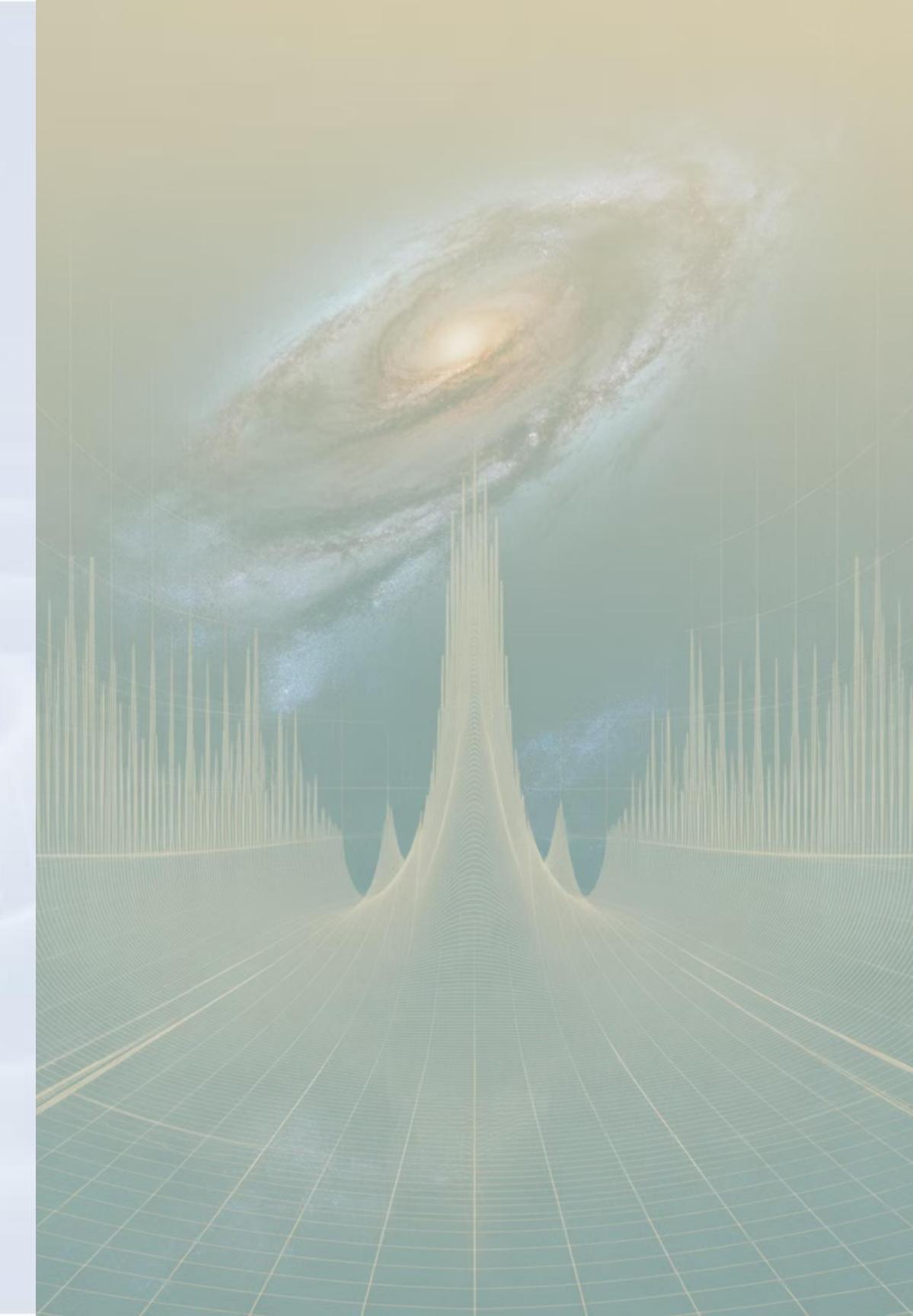
Irreducible information bottleneck

# Decoupled training: biased result & wider uncertainty

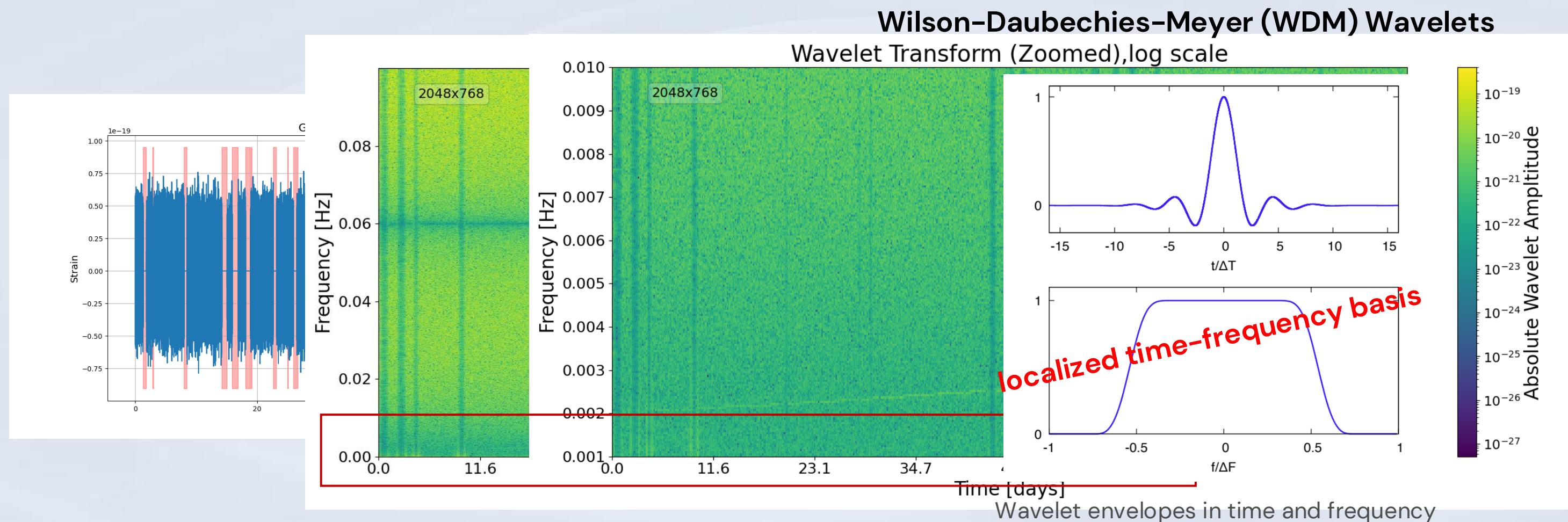


# What if for a longer signal

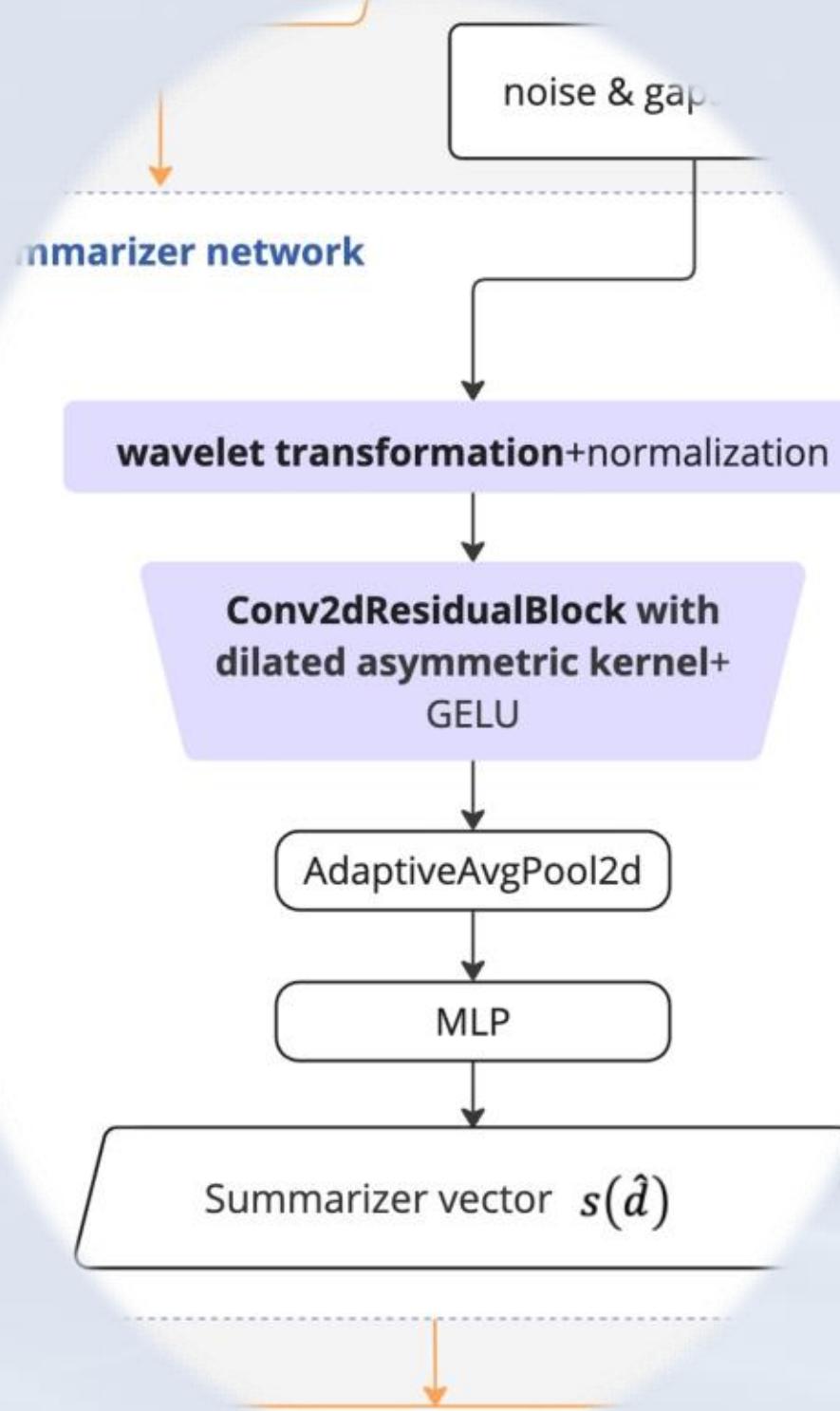
Conv1d cannot handle .....



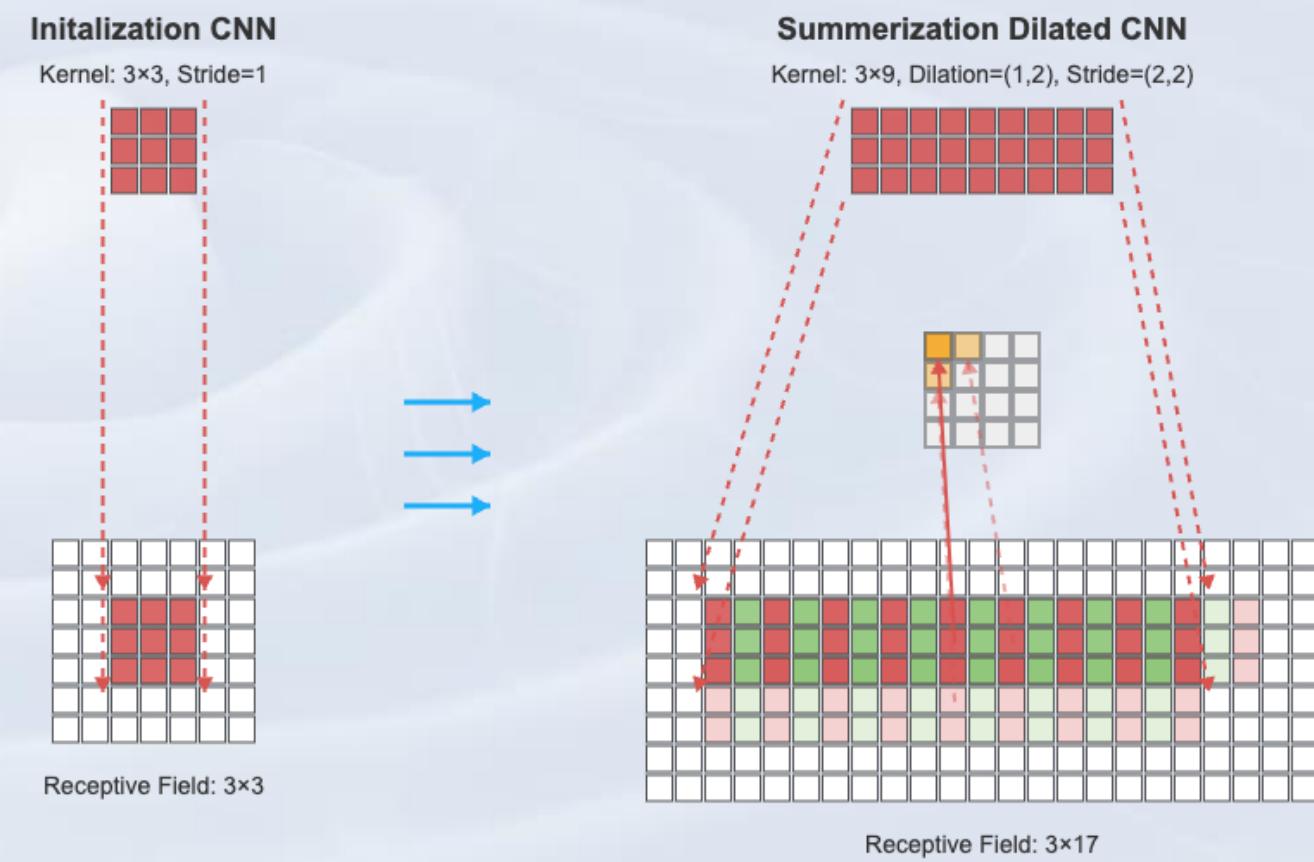
# Wavelet: time – frequency domain representation



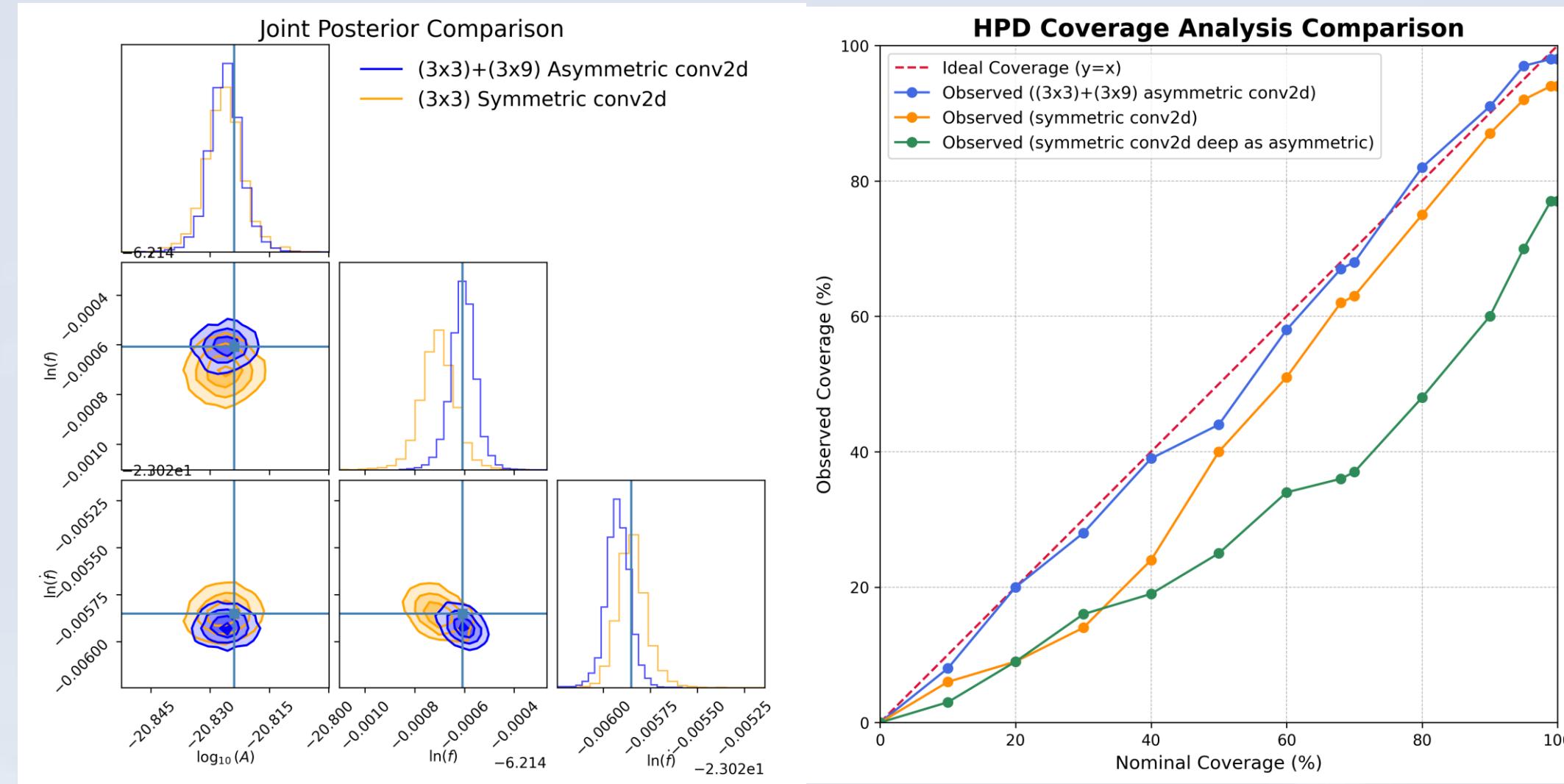
# Summarizer for 2D spectrum



**Isotropic issue for wavelet representation**  
**Asymmetric Kernels is applied**



# Asymmetric Kernel better choice



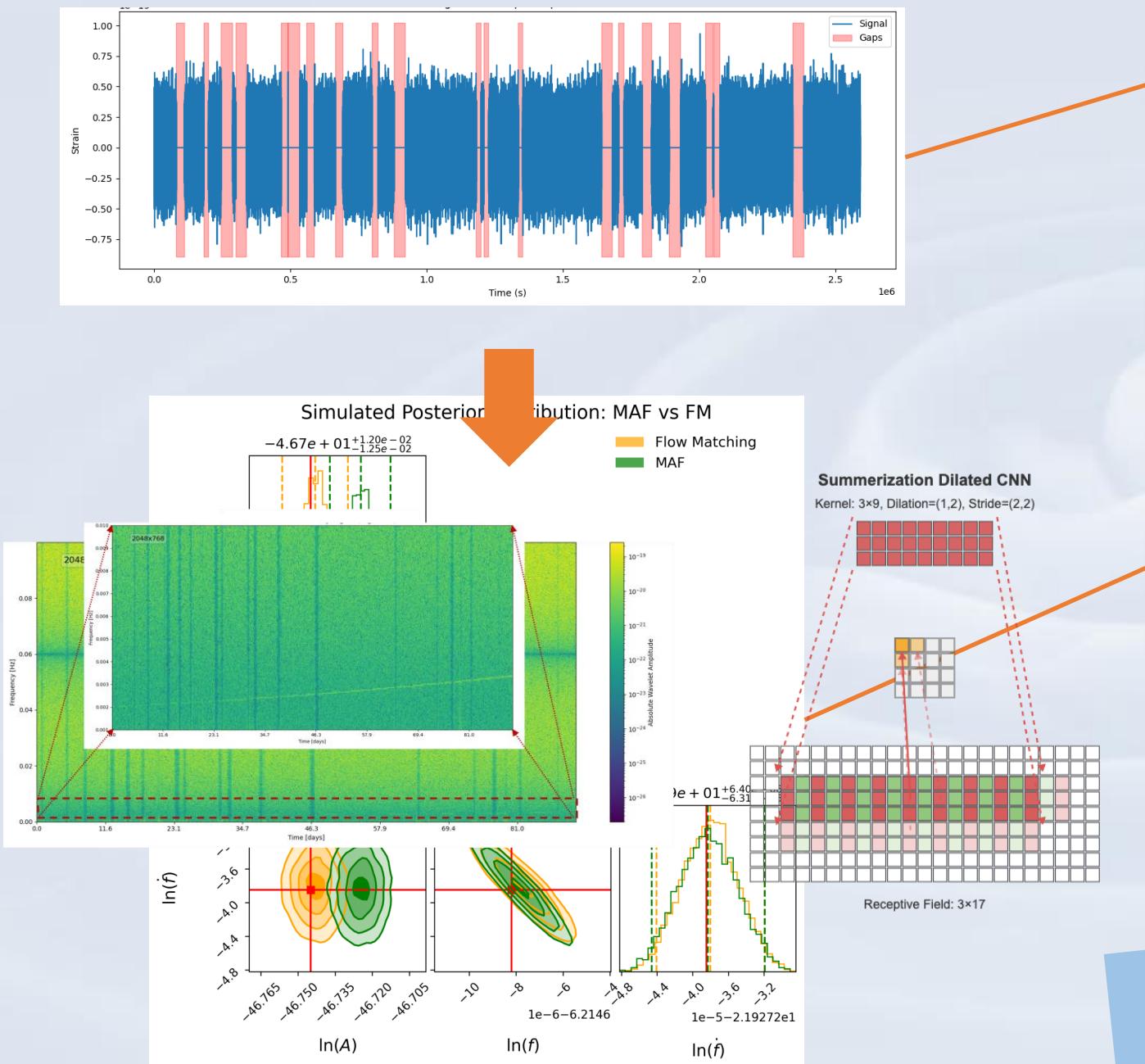
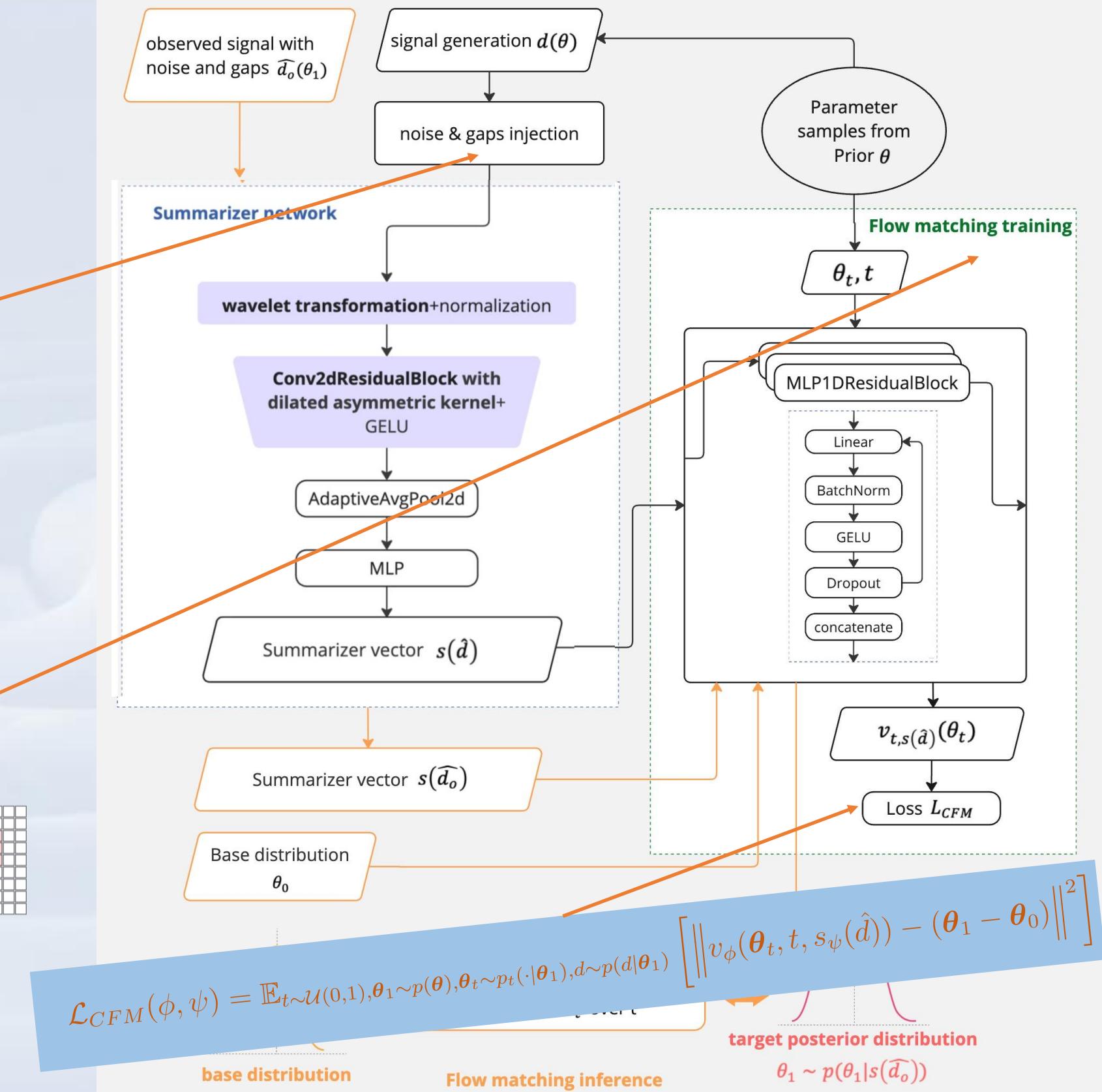
✓ Asymmetric Kernel ( $3 \times 9$ )

Well-calibrated, on the diagonal. Blue line in posterior, & PP-plot.

✗ Symmetric Models ( $3 \times 3$ )

Both symmetric models (green, orange) are not calibrated.

# Here is our model:



# On the Way...

01

## Sufficient summarizer

How to measure the sufficiency of the summarizer

02

## Multiple GB signals

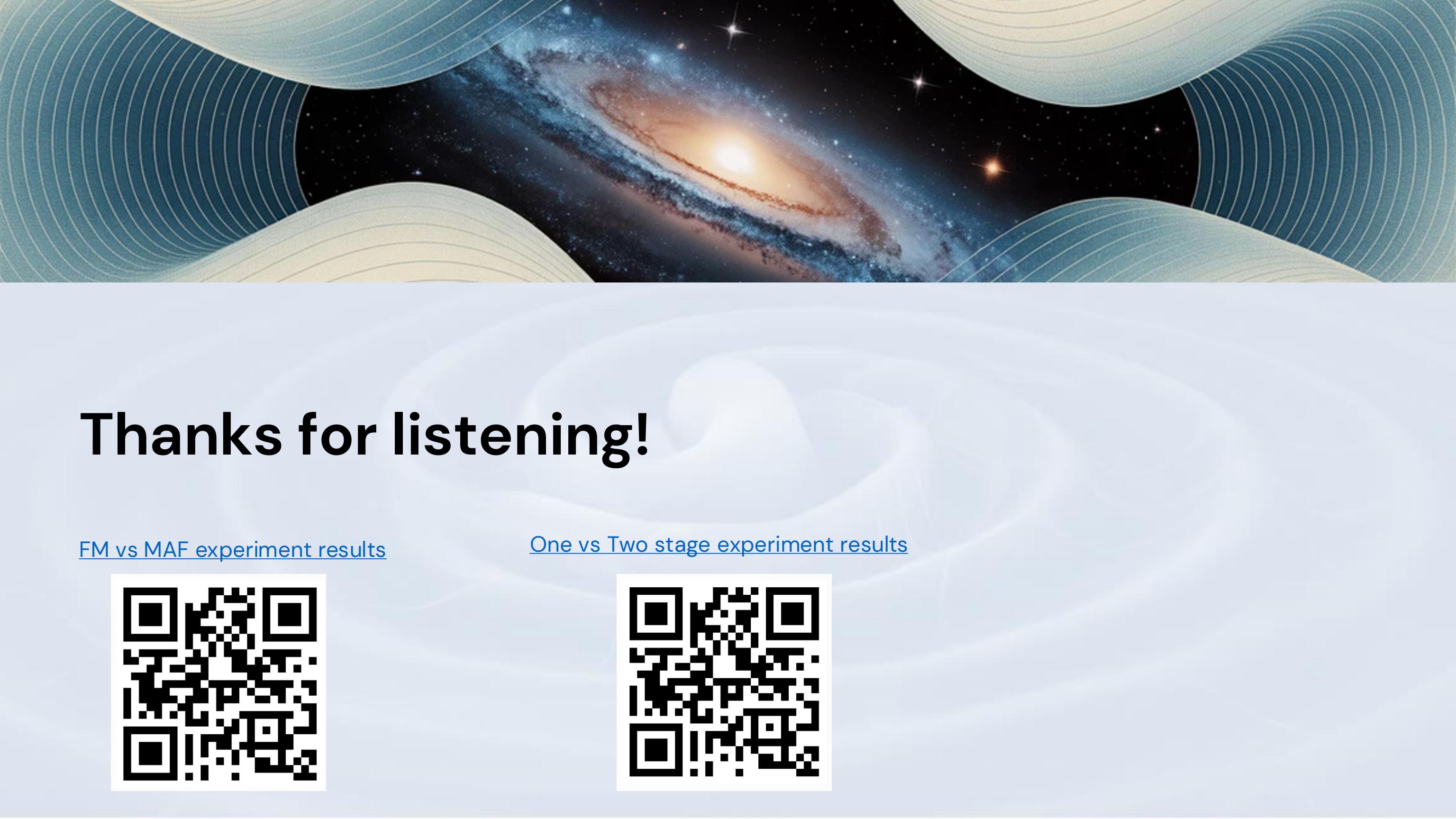
Incorporating multiple overlapping GB signals.

03

## Training efficiency

Package for flow matching based on wavelet transformation in Jax





# Thanks for listening!

[FM vs MAF experiment results](#)



[One vs Two stage experiment results](#)

