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GW : Ripples in Space-Time




Being in space: LISA




LISA: millihertz frequency band

Supermassive black hole pairs

Close pairs of stellar-mass objects

Extreme mass
ratio inspirals
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The Core Problem:
Biased Inference

Bayesian inference with Whittle likelihood :

p(10) = —5 (0 = huald = o)

Assuming stationary Gaussian noise :

cMC
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Previous Research

Standard & Apodization Techniques Reconstruction: Augmentation
Windowing[2014]: forced to throw away data, - Bayesian Data Augmentation[2019]:
with loss of information Computationally prohibitive for long signals

Missing Auxiliary Séa[;ﬂeﬁgr;g
Data Vars )
Matrices)

Apodization (Windowing)

« Wavelet Domain
Augmentation
[2025]:

Relies on strict local
stationarity
assumption.

Critique: Alters noise stochasticity,

violates stationarity, biases estimation
[Burke et al., 2025]




From Imputation to Direct Inference
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Previous Work:
Imputation: BIGRU-CAE

Denoising is needed when considering real signal

Target: Direct parameter Inference from “gapped “signal



A Robust, Scalable
SBl Framework



SUMMARIZER

' FLOW
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Architecture: Embed & Flow

The Summarizer The Flow Matching Engine

This network compresses the high- Takes s as input, which conditions the vector
dimensional input d(t) into a low- vector field v_t(\theta/s), transforming the base
dimensional, dense summary statistic base distribution into the final posterior

vector, s. p(\theta/d).

() Joint Training is Key
The Summarizer learns features that are specifically optimized for parameter

estimation, ensuring the minimal amount of information is lost.



Inference Engine: Why Flow Matching?



Normalizing Flows: The Foundation

xT @ Input vector

Neural
network

h.(x)=20 @ Parameter vector

Base density Transformed density
= f910°°°of9‘.v B
< < J A
= o
Normalizing FI“ﬁ‘“%

20

Y\a&‘o ’

Simple Prior Invertible Transform Complex Posterior




MAF: Forcing Invertibility

The Constraint Challenge

21 L1
Autoregressive NN for transformation layers Zi—1 st torms (AR
Restrictive architectural structure ensures invertibility  EEEEN T;

Zi+1 p Lit+1

L 2 © 04(x1:4-1) + pi(X1:5-1)
Simplified Math
Tractable Jacobian determinant calculations 2D Tp

z ~ m(2) ? - X ~ p(x)

(known) (unknown)

Masked Autoregressive Flow (MAF)



Flow Matching: Breaking Free

Base distribution ut(z,0) = E%(za = Target distribution
t=0: z~m ! t=1: 0~p(0|x)
(1—1¢t)z+to

L(9) = Einri(0,1), smr(z), 0~p(@l) [V, ¥1(2,0), ) — (6 — 2)]7]



FM VS MAF
on 30-day GB-like signal

Input: signals with gaps in time domain

le—19 Generated Signal with Gaps (Gap Ratio: 22.61%)
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Summarizer discussion

High dimension: 50K
Only think about the first layer if MLP applied...
50K*512...... computational impossible

L

observed signal with /signal generation d(0) /‘
noise and gaps d,(6,)

Parameter
samples from
Prior 8

[ noise & gaps injection

Flow matching training:
[ 6.t ]
normalization
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Summarizer network

2\
MLP1DResidualBlock

Conv1d with larger stride

+ GELU
[AdaptiveAngooH d) ,——> BatchNorm
ST
| concatenate

/ Summarizer vector s(&)

@Zer vecto l’@

Base distribution
6o

ODE solver
intergrates v; overt

target posterior distribution

0, ~ p(64]s(d,))



Simulated Posterior Distribution: MAF vs FM
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Statistical reliability check

O More stable

f Well-Calibrated

Empirical Quantile
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Calibration Check: Nominal vs. Observed Coverage
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[nput
10 Signal Convolutional

What if decoupling the

summarizer during training?

(OO

Output

[D

Hallen Dense Layers
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'STAGE 1: FEATURE EXTRACTION (DCAE TRAINING)

STAGE 1 TRAINING

4

STAGE 2 TRAINING
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Joint vs decoupled training

Loss
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Decoupled training: biased result & wider uncertainty

In(f)

In(f)

One-Stage vs Two-Stage Comparison

One-Stage FM
= Two-Stage FM

Calibration: Nominal vs. Observed Coverage
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What if for a longer signal

Convld cannot handle. ......




Wavelet: time - frequency domain representation

Wilson-Daubechies-Meyer (WDM) Wavelets

Wavelet Transform (Zoomed),log scale
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‘ noise & gay.

nmarizer network J

I

wavelet transformation+normalization

|

Conv2dResidualBlock with
dilated asymmetric kernel+
GELU

(AdaptiveAngooIZd J

!
[ MLP j
l

/ Summarizer vector s(d)

Summarizer for 2D spectrum

Isotropic issue for wavelet representation

Initalization CNN Summerization Dilated CNN
Kernel: 3x3, Stride=1 Kernel: 3x9, Dilation=(1,2), Stride=(2,2)
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Asymmetric Kernel better choice

Joint Posterior Comparison

— (3x3)+(3x9) Asymmetric conv2d
(3x3) Symmetric conv2d
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Frequency [Hz]
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On the Way...

O1 02

Sufficient summarizer Multiple GB signals

How to measure the sufficiency Incorporating multiple overlapping
of the summarizer GB signals.

03

Training efficiency

Package for flow matching based on wavelet transformation in Jax




Thanks for listening!

FM VS MAF eXDeriment results One VS TWO Stage experiment reSU|tS
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https://bpanda.b-cdn.net/experiment_dashboard_fmvsmaf.html
https://bpanda.b-cdn.net/experiment_dashboard_decoupled_stage.html
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