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Problem: the model marginalisation integral
Notation:

ξ: population (hyper-)parameters;

θ: individual (unit-level) parameters;

y: observations.

Bayes’ formula for the full posterior:

p(ξ,θ|y) ∝ p(ξ)p(θ|ξ)p(y|θ).

Law of total probability:

p(ξ|y) =
∫
Ωθ

p(ξ,θ|y)dθ.

Combining the two:

p(ξ|y) ∝ p(ξ)

∫
Ωθ

p(y|θ)p(θ|ξ)dθ = p(ξ)p(y|ξ), (1)

The Bayes’ formula.
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Problem: the model marginalisation integral

Figure: Hierarchical model marginalisation vs. marginal likelihood computation.

The model marginalisation integral p(y|ξ) is also a marginal likelihood (for
sub-models in the hierarchical structure):

p(θ|y, ξ) = p(y|θ, ξ)p(θ|ξ)
p(y|ξ)

.
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Evaluating the model marginalisation integral

Facts:

pPoisson(y |θ) =
θy

y !
e−θ, and

dy

dty
etθ = θyetθ

and
Mθ(t) = E(etθ), for suitable t ∈ R.
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Derivatives of prior moment-generating function
with Poisson likelihoods, univariate, 1 observation

p(y |ξ)

=

∫
Ωθ

p(y |θ)p(θ|ξ)dθ

=Eθ|ξ[p(y |θ)]

=
1

y !
Eθ|ξ[θ

yetθ]
∣∣
t=−1

=
1

y !
Eθ|ξ

[
dy

dty
etθ
] ∣∣∣∣

t=−1

=
1

y !

dy

dty
Eθ|ξ

[
etθ
] ∣∣∣∣

t=−1

=
1

y !

dy

dty
Mθ|ξ(t)

∣∣∣∣
t=−1

Facts:

pPoisson(y |θ) =
θy

y !
e−θ,

dy

dty
etθ = θyetθ

and

Mθ(t) = E(etθ), for suitable t ∈ R.
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Derivatives of prior moment-generating function
with Poisson likelihoods, multivariate, m observations

Corollary

For λ := rθ and Poisson likelihood:

p(y|λ) =
m∏
j=1

(ζjλj)
yj

yj !
e−ζjλj ,

under certain trivial conditions, the mgf-marginalisation is

p(y|ξ) =

 m∏
j=1

1

yj !
ζ
yj
j

 ∂
∑m

s=1 ys

∂ty11 ∂ty22 · · · ∂tymm

n∏
i=1

Mθi |ξ((t
⊺r)i )

∣∣∣∣
t=−ζ

. (2)
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Limitations

Nested Sampling:

can deal with complicated models;

(almost) always practical;

sophisticated.

Moment-generating Function marginalisation:

only works for certain likelihoods;

sometimes not as practical as theory promises;

underexplored.
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Example: estimating X-ray Source Intensities

Figure: X-ray photon counts in NGC2516 Southern Beehive, Chandra telescope

Goal: Estimate distribution of source count rates
Issues:

background contamination

overlapping source regions
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Types of sources

Figure: Isolated, binary-overlapping, multiple overlapping and kiwi-laser sources
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Estimating X-ray Source Intensities
model construction

Observation Segment counts Ys and background count X

Likelihood Ys |(λi , ξs)
indep∼ Poisson

(∑
i (rs,iesλi + asξs)T

)
Population(source) λi |α, β

i.i.d.∼ Gamma(α, β)

Population(background) ξ
s

i.i.d.∼ Gamma (αξ, βξ)

Population parameters α
β ∼ 1[αβ > 0], α

β2 ∼ 1[ αβ2 > 0]

Population parameters αξ = 10−6 + x , βξ = AT (10−12 + 1)

More parameters than observations! Want
∫∫

L(α, β, ξ,λ;Y)dξdλ.

Y linearly dependent =⇒ L(α, β, ξ,λ;Y) is not a product in Y.

=⇒
∫ ∫ ∏

· · · dξdλ ̸=
∏∫ ∫

· · · dξdλ.
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High-order Derivative to Compute

But how?

p(yGk
|α, β)

=

[∏
s∈Gk

1

ys !
tyss

]

× ∂
∑

s∈Gk
ys

∂t
ys1
s1 ∂t

ys2
s2 · · · ∂tyss∈Gk

{∏
i∈Gk

(
β

β − (t⊺r̃)i

)α ∏
s∈Gk

(
βξ

βξ − (t⊺r̃)I+s

)αξ
}∣∣∣∣∣

t=−ζ

gives

L(α, β;Y) =
∏
k

p(yGk
|α, β)
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Moment generating function for transformed parameters
linear dependency

λs :=
∑

i∈s rs,iλi .

Mλ(t) = E(et
⊺λ) = E(e

∑I
i=1 tiλi ) =

I∏
i=1

E(etiλi ) =
I∏

i=1

Mλi
(ti ) =⇒

Mλ(ζ) = E(eζ
⊺λ) = E(eζ

⊺rλ) = Mλ((ζ
⊺r)⊺) =

I∏
i=1

Mλi
((ζ⊺r)i )

Obtain a closed form of the marginal distribution like no other method!
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Posterior Contours

Figure: Contours of marginal posterior (isolated + binary-overlapping sources)
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Model evidence calculation
with Poisson likelihoods, univariate, n observations

For λ = ζθ, with certain trivial assumptions,

p(y) =

[
n∏

i=1

1

yi !

](
∂

∂t

)∑n
i=1 yi

Mθ(tζ)

∣∣∣∣
t=−n

(3)

or

p(y) =

[
n∏

i=1

1

yi !

]
ζ
∑n

i=1 yi

(
∂

∂t

)∑n
s=1 ys

Mθ(t)

∣∣∣∣
t=−nζ

. (4)
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Derivatives of prior moment-generating function
with gamma likelihoods, univariate, 1 observation, known shape α

p(y |ξ)

=

∫
Ωθ

p(y |θ)p(θ|ξ)dθ

=Eθ|ξ[p(y |θ)]

=
yα−1

Γ(α)
Eθ|ξ[θ

αetθ]
∣∣
t=−y

=
yα−1

Γ(α)
Eθ|ξ

[(
d

dt

)α

(−∞)+

etθ

] ∣∣∣∣
t=−y

=
yα−1

Γ(α)

(
d

dt

)α

(−∞)+

Eθ|ξ

[
etθ
] ∣∣∣∣

t=−y

=
yα−1

Γ(α)

(
d

dt

)α

(−∞)+

Mθ|ξ(t)

∣∣∣∣
t=−y

Facts:

pgamma(y |θ) =
θα

Γ(α)
yα−1e−θy ,

Caputo fractional derivative(
d

dt

)α

(−∞)+

etθ = θαetθ

and

Mθ(t) = E(etθ), for suitable t ∈ R.
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Derivatives of prior moment-generating function
with gamma likelihoods, multivariate, n observation, known shape α

p(y|ξ) =

[
n∏

i=1

yαi−1
i

Γ(αi )

]
∂
∑n

s=1 αs

∂tα1
1 ∂tα2

2 · · · ∂tαn
n

Mθ|ξ(t)

∣∣∣∣
t=−y

. (5)

If r is diagonal in β := rθ > 0, then

p(y|ξ) =

[
n∏

i=1

yαi−1
i

Γ(αi )

]
n∏

i=1

∂αi

∂tαi
i

Mθi |ξ((t
⊺r)i )

∣∣∣∣
t=−y

, (6)
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Model evidence calculation
with gamma likelihoods, univariate, n observations, known shape α

β := rθ > 0,

p(y) =

[
n∏

i=1

yα−1
i

]
rnα

Γ(α)n

(
∂

∂t

)nα

Mθ(t)

∣∣∣∣
t=−r

∑n
i=1 yi

or

p(y) =

[
n∏

i=1

yα−1
i

]
1

Γ(α)n

(
∂

∂t

)nα

Mθ(rt)

∣∣∣∣
t=−

∑n
i=1 yi

for (Liouville-)Caputo fractional derivative
(

∂
∂t

)nα
, lower limit −∞.
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Extension: other Likelihoods

Y ∼ Transformation Result MGF derivative
Laplace(µ = 0, τ) |Y | Gamma(1, τ) 1
Normal(µ = 0, τ) Y 2 Gamma

(
1
2 ,

τ
2

)
0.5

Rayleigh(b) Y 2 Gamma
(
1, 1

2b2

)
1

Maxwell-Boltzmann(a) Y 2 Gamma
(
3
2 ,

1
2a2

)
1.5

Inv-Gamma(α, β) 1
Y Gamma(α, β) α

Lévy(µ = 0, c) 1
Y Gamma

(
1
2 ,

c
2

)
0.5

Weibull(ρ = 1, λ) Y Gamma(1, λ) 1
BurrXII(c = 1, k) log(Y + 1) Gamma(1, k) 1

Pareto(α, ym) log
(

Y
ym

)
Gamma(1, α) 1

Dagum(a = 1, b = 1, q) log
(

1
Y + 1

)
Gamma(1, q) 1

Gompertz(b = 1, η) 1− eY Gamma(1, η) 1
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Extension: posterior moments/mgf
with Poisson likelihoods, univariate, 1 observation

For canonical parameter η = log θ,

Eθ(θ
t |y) = Mη|y (t) =

(
d
dr

)y+t
Mθ(r)

∣∣∣∣
r=−1(

d
dr

)y
Mθ(r)

∣∣∣∣
r=−1

, (7)

which is also known as ‘transfer function’.
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Extension: posterior mgf
with gamma likelihoods, univariate, 1 observation, known shape α

Mθ|y (t) =

(
d
dr

)α
(−∞)+

Mθ(r)
∣∣∣
r=−y+t(

d
dr

)α
(−∞)+

Mθ(r)
∣∣∣
r=−y

. (8)
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Appendix
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Derivative-expectation exchanging conditions

Proposition

The conditions for exchanging derivative and expectation are given by

1 κ ∈ N0;

2 υ(θ, t) is defined for 0 ≤ θ < ∞ and c ≤ t ≤ d, where [c , d ] is any
arbitrary subset of the radius of convergence for the prior mgf Mθ(t);

3 For the prior measure µ(dθ), υ(θ, t) is integrable with respect to µ
for each t ∈ [c , d ];

4 Let s ∈ (c , d). Then for every ϵ > 0 there exists a δ > 0 such that∣∣∣∣∣
(

d

dt

)κ

υ(θ, t)−
(

d

dt

)κ

υ(θ, s)

∣∣∣∣∣ < ϵ

for all θ ∈ [0,∞) and for all t ∈ (s − δ, s + δ).
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Poisson derivative-expectation exchanging

1 κ is the observed Poisson count, so κ ∈ N0;

2
(
d
dt

)κ
υ(θ, t) = θκetθ with t = −1, so υ(θ, t) = eθt ;

3 Prior distributions with mgf’s exist and is finite for all t in [c , d ] for
c < −1 < d =⇒ ∀t ∈ [c , d ], υ(θ, t) = etθ is µ(dθ)-integrable;

4 θκetθ is continuous with respect to both θ ∈ [0,∞) and t ∈ [c , d ].
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Derivatives of prior moment-generating function
with Poisson likelihoods, multivariate, m observations

Corollary

Suppose λ := rθ with known r ∈ Rm×n for m ≥ n and yj
indep∼ Poisson(λj),

such that

p(y|λ) =
m∏
j=1

(ζjλj)
yj

yj !
e−ζjλj ,

where ζ ∈ Rm are known constants. Suppose the population prior mgf
exists and satisfies Mθi |ξ((−ζ⊺r)i ) < ∞ for each i ∈ {1, 2, . . . , n}. Then

p(y|ξ) =

 m∏
j=1

1

yj !
ζ
yj
j

 ∂
∑m

s=1 ys

∂ty11 ∂ty22 · · · ∂tymm

n∏
i=1

Mθi |ξ((t
⊺r)i )

∣∣∣∣
t=−ζ

, (9)

if Mθ|ξ(t) is continuous and differentiable up to the suitable order at −ζ.
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Bell Polynomials
Computing High-order Derivatives, Isolated Sources

B0 := 1 and

Bn+1(x1, . . . , xn+1) =
n∑

i=0

(
n

i

)
Bn−i (x1, . . . , xn−i ) xi+1, (10)

For K (t) :=
∑n

i=1 Kθi |ξ(t), Using Faà di Bruno’s formula,(
d

dt

)y n∏
i=1

Mθi |ξ(t)

=

(
d

dt

)y

exp

[
n∑

i=1

Kθi |ξ(t)

]
=exp [K (t)]By

[
K ′(t),K ′′(t), . . . ,K (y)(t)

]
=

[
n∏

i=1

Mθi |ξ(t)

]
By

[
K ′(t),K ′′(t), . . . ,K (y)(t)

]
(11)
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Generalised Leibniz Rule
Computing High-order Derivatives, Overlapping Sources

For ki ! :=
∏m

j=1 ki ,j !, |k| :=
∑m

j=1 kj , D
k := ∂|k|

∂t
k1
1 ···∂tkmm

and multinomial

coefficient (
y

k1, . . . , kn

)
=

y!∏n
i=1 ki !

=
y1! · · · ym!∏n
i=1

∏m
j=1 ki ,j !

,

GLR is

Dy

(
n∏

i=1

Mθi |ξ

)
(ζ) =

∑
k1+···+kn=y

(
y

k1, . . . , kn

) n∏
i=1

DkiMθi |ξ(ζ), (12)
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Generalised Leibniz Rule
Computing High-order Derivatives, Binary Overlapping Sources

For

LA := β − r1eut
0
u − r2ew t

0
w ,

LB := β − r3ev t
0
v − r4ew t

0
w ,

Mu := β2 − aut
0
u , Mv := β2 − av t

0
v , Mw := β2 − aw t

0
w ,

∂yu+yv+yw

∂tyuu ∂tyvv ∂tyww
f (tu, tv , tw )

∣∣∣
(t0)

=yu!yv !yw !

yu∑
m=0

yv∑
p=0

yw∑
n=0

yw−n∑
q=0

(
β

LA

)α
Γ(α+m + n)

Γ(α)m!n!

(
r1eu
LA

)m (
r2ew
LA

)n

×
(

β

LB

)α
Γ(α+ p + q)

Γ(α)p!q!

(
r3ev
LB

)p (
r4ew
LB

)q

×
(

β2

Mu

)α2 Γ(α2 + (yu −m))

Γ(α2)(yu −m)!

(
au
Mu

)(yu−m)(
β2

Mv

)α2 Γ(α2 + (yv − p))

Γ(α2)(yv − p)!

(
av
Mv

)(yv−p)

×
(

β2

Mw

)α2 Γ(α2 + (yw − n − q))

Γ(α2)(yw − n − q)!

(
aw
Mw

)(yw−n−q)

.

(13)
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Example 2
Pump failure, gamma-prior hierarchical model

From ?. Number of pump failures yi and the operating times ti of pump i :

i 1 2 3 4 5 6 7 8 9 10

ti 94.32 15.72 62.88 125.76 5.24 31.44 1.048 1.048 2.096 10.48
yi 5 1 5 14 3 19 1 1 4 22

Table: Pump failure data

Model:

(λi |α, β)
iid∼ Gamma(α, β)

Yi |λi
indep.∼ Poisson(λi ti ).
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Example 2
Pump failure, gamma-prior hierarchical model

Equivalent GLMM:

log(E(Yi |λi )) = log(µi ) = η̃i = log(ti ) + log(λi ),

where Yi |λi
indep.∼ Poisson(µi ), log(ti ): offsets, random effects:

log(λi ), no fixed effects.

p(y|α, β) =
10∏
i=1

tyii
yi !

(
∂

∂si

)yi

Mλi |α,β(si )

∣∣∣∣∣
si=−ti

=
10∏
i=1

tyii
yi !

Γ(α+ yi )

Γ(α)

βα

(β + ti )α+yi
.

Empirical Bayesian [?]: α̂ = 1.27 and β̂ = 0.82, so
p(y|α = 1.27, β = 0.82) = 2.766569× 10−16.
Verification: (λi |α, β) ∼ NegBin(α, β

β+ti
), so

p(y|α = 1.27, β = 0.82) = 2.766569× 10−16.
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Example 3
Pump failure, Pareto-prior non-hierarchical model

(λ|α, β) ∼ Pareto(α, k),

yi |λ
iid∼ Poisson(λti ).

The exponential integral function [?]:

Er (z) = z r−1Γ(1− r , z),

where Γ(1− r , z) =
∫∞
z t−re−tdt.

p(y|α, k) =

[
10∏
i=1

tyii
yi !

](
d

ds

)∑10
i=1 yi

Mλ|α,k(s)

∣∣∣∣∣
s=−

∑10
i=1 ti

=

[
10∏
i=1

tyii
yi !

]
k75αEα+1−75

(
k

10∑
i=1

ti

)
=[2.799194× 1048]αk75Eα−74(350.032k).
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Example 3
Pump failure, Pareto-prior non-hierarchical model

Verification: Marginal density of mixed Poisson-Pareto [?]:

p(y(t)|α, k) = α(kt)y

y ! Eα−y+1(kt).

p(y|α, k) =
10∏
i=1

p(yi (ti )|α, k) = αk
∑10

i=1 yi

10∏
i=1

tyii
yi !

Eα−yi+1(kti )

=

[
10∏
i=1

tyii
yi !

]
αk

∑10
i=1 yiEα+1−

∑10
i=1 yi

(
k

10∑
i=1

ti

)
=[2.799194× 1048]αk75Eα−74(350.032k),
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