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Problem: the model marginalisation integral
Notation:

e &: population (hyper-)parameters;

@ 0: individual (unit-level) parameters;

@ y: observations.

Bayes' formula for the full posterior:

p(&,0ly) o< p(§)p(01€)p(y|0).

Law of total probability:

p(&ly) :/Q p(&, 0ly)do.

Combining the two:

p(€ly) p(ﬁ)/Q p(y|0)p(01€)d0 = p(£)p(yl), (1)

The Bayes' formula.
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Problem: the model marginalisation integral
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Figure: Hierarchical model marginalisation vs. marginal likelihood computation.

The model marginalisation integral p(y|£) is also a marginal likelihood (for
sub-models in the hierarchical structure):

P(yl0.£)p(61€)

POl €)= p(ylé)
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Evaluating the model marginalisation integral

Facts:

0y _
pPoisson(yw) = ﬁe

and
My(t) = E(e®), for suitable t € R.
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Derivatives of prior moment-generating function

with Poisson likelihoods, univariate, 1 observation
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Derivatives of prior moment-generating function

with Poisson likelihoods, multivariate, m observations

Corollary

For X :=r0 and Poisson likelihood:

)Y
pyA) = [[ 22 o,

=
under certain trivial conditions, the mgf-marginalisation is

825 1Ys n

P(Y|£ H ijj atylatélz 8ty'" H M@ |& (tT ) )

t=—¢

()

Siyang Li Moment-generating Function for Bayesian Computation

6 /31




Limitations

Nested Sampling:
@ can deal with complicated models;
o (almost) always practical;
@ sophisticated.
Moment-generating Function marginalisation:
@ only works for certain likelihoods;
@ sometimes not as practical as theory promises;

@ underexplored.
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Example: estimating X-ray Source Intensities

Figure: X-ray photon counts in NGC2516 Southern Beehive, Chandra telescope

Goal: Estimate distribution of source count rates
Issues:

@ background contamination

@ overlapping source regions
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Types of sources

Figure: Isolated, binary-overlapping, multiple overlapping and kiwi-laser sources



Estimating X-ray Source Intensities

model construction

Observation Segment counts Y, and background count X
Likelihood Yol (A, €.) "* Poisson (Z,-(rs,fesA,- + és§5)7>
Population(source) Al B S Gamma(a, 3)

Population(background) | ¢ "% Gamma (o, Be)
Population parameters g~ 1[5 >0], 5 ~ 1[5 > 0]
Population parameters | a; =107°+ x, B¢ = AT (10712 + 1)

@ More parameters than observations! Want [[ L(cv, 3,€, A; Y)d€dA.
o Y linearly dependent = L(ca, 3,€,A;Y) is not a product in Y.

= [[T]---d&dX#T1[ [ - d&dA.
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High-order Derivative to Compute

intersection
of regions
1,2,and 4

But how?
p(yg,la, B)
_ [H itys]
s€Gk yot
9 ses, ¥s o o
" ool - Otleg, {;!g[k (ﬁ> sgk <Bf - (%TF)’*S) } t=—¢
gives

L, 3:Y) =[] p(yg,le. B)
k
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Moment generating function for transformed parameters

linear dependency

)‘S = Zies rSJAi'

I
M (t) = E(etTA) — E(ez;q ti&,‘) — HE(ef,‘Ai) = H MA,—(ti) _
i=1

l
Mx(€) = E(eS™) = E(e™2) = MA((¢™N)T) = [ [ M, (<))
i=1

Obtain a closed form of the marginal distribution like no other method!
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Posterior Contours

Figure: Contours of marginal posterior (isolated + binary-overlapping sources)
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Model evidence calculation

with Poisson likelihoods, univariate, n observations

For A = (6, with certain trivial assumptions,

n

27:1}/1
p(y) = [I[l %] (5:) " M0

t=—n

or

0y 9\ Z
(i (8_) Mo (t)

t

p(y) = lH S

|
=177

t=—n(
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Derivatives of prior moment-generating function

with gamma likelihoods, univariate, 1 observation, known shape «

p(yI€)
Facts:
= [ elyimetelerds
’ a—1_—0
Pgamm (y\&) = =y e y7
=E9\§[P(Y’9)] gamma M(a)
(0% 0 C t f t' |d . t.
( )IE9|§[9 et Ht_ . aputo fractional derivative
-t d\“ i “ et9 — 9a6t9
Egje ( ) et dt) (s
( ) (—o0)+ t=—y
ol and

y
=T
=T
(e 1 (—o0)+ ==Y My(t) = E(et’), for suitable t € R.
ya
=T

(o) <5t)?—oo)+ Myje(t)

t=—y
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Derivatives of prior moment-generating function

with gamma likelihoods, multivariate, n observation, known shape «

n a 1 )
' 825:1 as
p(yl€) = [H M) ] OO - Ot Mg (t)

If ris diagonal in 3 :=r@ > 0, then

t=—y

)
t=—y

-1 o
p(yl€) = [ s ] gta,/\/’els((t r)i)
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Model evidence calculation

with gamma likelihoods, univariate, n observations, known shape «

5 :=rf >0,
[ n T o B no
ply) = | TTve —(—) M(t)
_E ] r(Oé) 81‘ t:_rEIq:lyi
or _ _
n 1 O\
p(y) = |T] v —(—) Mo(rt)
117 e (e -

for (Liouville-)Caputo fractional derivative (%)na, lower limit —oo.
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Extension: other Likelihoods

Y ~ Transformation | Result MGF derivative
Laplace(u =0, 7) Y| Gamma(1,7) 1
Normal(u = 0, 7) Y? Gamma(3,%) | 0.5
Rayleigh(b) Y? Gamma(l,5z) | 1
Maxwell-Boltzmann(a) | Y? Gamma(3,55) | 1.5
Inv-Gamma(a, 3) + Gamma(a,3) | «
Lévy(u =0, ¢) + Gamma(3,5) | 0.5
Weibull(p = 1, \) Y Gamma(1, \) 1
BurrXll(c =1, k) log(Y + 1) Gamma(1, k) 1
Pareto(a, ym) log <7:) Gamma(1, «) 1
Dagum(a=1,b=1,q) | log (3 +1) Gamma(1, q) 1
Gompertz(b = 1,7) 1—e” Gamma(1,7) 1
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Extension: posterior moments/mgf

with Poisson likelihoods, univariate, 1 observation

For canonical parameter n = log 6,

E0(9t|}/) = Mn|y(t) =

which is also known as ‘transfer function’.
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Extension: posterior mgf

with gamma likelihoods, univariate, 1 observation, known shape «
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Appendix
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Derivative-expectation exchanging conditions

Proposition

The conditions for exchanging derivative and expectation are given by
Q@ ~ € Ny,

@ v(0,t) is defined for 0 < § < oo and ¢ < t < d, where [c, d] is any
arbitrary subset of the radius of convergence for the prior mgf My(t);

© For the prior measure p(df), v(6,t) is integrable with respect to
for each t € [c,d];

Q Lets € (c,d). Then for every € > 0 there exists a § > 0 such that

() 00 () 0

for all € [0,00) and for all t € (s — §,s + §).

<€
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Poisson derivative-expectation exchanging

@ & is the observed Poisson count, so x € Np;

Q (%)&U(G, t) = 0%et? with t = —1, so v(6, t) = €’¢;

@ Prior distributions with mgf's exist and is finite for all t in [c, d] for
c<—1<d = Vte|[c,d], v(d,t) = e? is u(df)-integrable;

@ 0%e'? is continuous with respect to both 6 € [0,00) and t € [c, d].
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Derivatives of prior moment-generating function

with Poisson likelihoods, multivariate, m observations

Corollary

Suppose X := r@ with known r € R™*" for m > n and y; i Poisson();),

such that .
(GiAj)Y
il

J

Jj=1

where { € R™ are known constants. Suppose the population prior mgf
exists and satisfies My, ¢((—(Tr);) < oo for each i € {1,2,...,n}. Then

m

pyl&) = |T]

Jj=1

5 aszl Ys 0
Y
o o' 0ty? - - Oty [T Moe((£7r):)
i=1

, (9)

1
y;!

if Mg|¢(t) is continuous and differentiable up to the suitable order at —(.

v
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Bell Polynomials
Computing High-order Derivatives, Isolated Sources

Bo =1 and
" (n
Bny1(x1,. .., Xng1) = ; (/) Bn—i(xt, .. Xn—i) Xi+1,
For K(t) := >, Ky,je(t), Using Faa di Bruno's formula,

d\’ +—

(E) ,1;[1M9i|£(t)
> Kae(t)
=1

d y
(&) =

—exp [K(6)] By [K/(), K (1), ... KV(1)]

= [H M9i|§(t)
i=1

B, [K'(t),ﬂ”(t), . ,&y)(t)]
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Generalised Leibniz Rule

Computing High-order Derivatives, Overlapping Sources

For k;! :=[[/Z; kil [k[ := 2> kj, D™ 5o and multinomial
coefficient

( y ): y! _ yite o ym!
kiooookn) Tkt TTy T2 kit

j=1
GLR is
DY (HM9,|5> = > <k Y K )HDk"Me,-g(C)a (12)
i—1 kit tkpmy S Lo Rn/ Gy
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Generalised Leibniz Rule
Computing High-order Derivatives, Binary Overlapping Sources

For
Ly = ﬁ — rleutg — r2eWt9V,
Lg =0 — r3evt8 — r4ewt‘(,)v,
262_aut8? Mv = BZ_avt\?a Mw = BZ_athn
8yu+}’v+}’w
——f(t,, t,, t
oty ot oty (tu, b, tw) ()

o L858 (8) i () (52)
() " () ()
I N % Fas i (vo— p)) [ 2 \ &
<Aﬂ7) r((oi;((yf—m)?)(m) <A64) W(M)

() e )
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Example 2

Pump failure, gamma-prior hierarchical model

From ?. Number of pump failures y; and the operating times t; of pump i:

i 1 2 3 4 5 6 7 8 9 10
t; | 94.32 1572 62.88 125.76 5.24 31.44 1.048 1.048 2.096 10.48
Yi 5 1 5 14 3 19 1 1 4 22

Table: Pump failure data

Model:

(\ila, B) id Gamma(a, 3)

YilAi indep- Poisson(A;t;).
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Example 2
Pump failure, gamma-prior hierarchical model

e Equivalent GLMM:
Iog(E(Y,-|)\,-)) = log(ui) = 7ji = log(t;) + log(Ai),

where Y;|\; "= Poisson(y;), log(tj): offsets, random effects:
log(Ai), no flxed effects.
°

10 i o\
plyla, 8) =] }ﬁ (g) M ja,5(si)
i=17"" !

ot T+ y;) B
=115, Ma) (B+g)ern

Si=—t;

o Empirical Bayesian [?]: & = 1.27 and 3 = 0.82, so
plyla = 1.27, 3 = 0.82) = 2.766569 x 10~16.

e Verification: (\j|a, 8) ~ NegBin(«, B+t) so
p(y|la = 1.27,3 = 0.82) = 2.766569 x 10716,
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Example 3
Pump failure, Pareto-prior non-hierarchical model
(Ae, B) ~ Pareto(a, k),
yilA i Poisson(At;).
@ The exponential integral function [?]:
E(2)=z"'T(1-r,2),
where (1 —r,z) = [t e tdt.

]
[10 Ly ] Sy
t/ d i=1
i) =TT ()7 Mhast)
[i=1 Vi | ds s= 10 4
(10 1y 10
= H - k™aEyi1-75 (k Z ti)
i=1 Vi° i=1

[2.799194 x 10*®)a k™ E,_74(350.032k).
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Example 3

Pump failure, Pareto-prior non-hierarchical model

o Verification: Marginal density of mixed Poisson-Pareto [?]:
a(kt)
ply(8)|a, k) = oy a (k).

10 y,
Y|a k Hp }/l ti |a k —asz ly'H En— yi+1 kt,)

10 ty, 10
= [Hy—] OkEFVE | s (th)
! i=1

=[2.799194 x 10*)ak™E,,_74(350.032k),
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